文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Organismic Memristive Structures With Variable Functionality for Neuroelectronics.

作者信息

Andreeva Natalia V, Ryndin Eugeny A, Mazing Dmitriy S, Vilkov Oleg Y, Luchinin Victor V

机构信息

Department of Micro- and Nanoelectronics, Faculty of Electronics, Saint Petersburg State Electrotechnical University "LETI", Saint Petersburg, Russia.

Department of Solid State Electronics, Saint Petersburg State University, Saint Petersburg, Russia.

出版信息

Front Neurosci. 2022 Jun 14;16:913618. doi: 10.3389/fnins.2022.913618. eCollection 2022.


DOI:10.3389/fnins.2022.913618
PMID:35774561
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9238295/
Abstract

In this paper, we report an approach to design nanolayered memristive compositions based on TiO/AlO bilayer structures with analog non-volatile and volatile tuning of the resistance. The structure of the TiO layer drives the physical mechanism underlying the non-volatile resistance switching, which can be changed from electronic to ionic, enabling the synaptic behavior emulation. The presence of the anatase phase in the amorphous TiO layer induces the resistive switching mechanism due to electronic processes. In this case, the switching of the resistance within the range of seven orders of magnitude is experimentally observed. In the bilayer with amorphous titanium dioxide, the participation of ionic processes in the switching mechanism results in narrowing the tuning range down to 2-3 orders of magnitude and increasing the operating voltages. In this way, a combination of TiO/AlO bilayers with inert electrodes enables synaptic behavior emulation, while active electrodes induce the neuronal behavior caused by cation density variation in the active AlO layer of the structure. We consider that the proposed approach could help to explore the memristive capabilities of nanolayered compositions in a more functional way, enabling implementation of artificial neural network algorithms at the material level and simplifying neuromorphic layouts, while maintaining all benefits of neuromorphic architectures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/59af96cb9eb5/fnins-16-913618-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/051723658872/fnins-16-913618-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/b2aeac142009/fnins-16-913618-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/5f7dcefe1ab2/fnins-16-913618-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/59af96cb9eb5/fnins-16-913618-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/051723658872/fnins-16-913618-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/b2aeac142009/fnins-16-913618-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/5f7dcefe1ab2/fnins-16-913618-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f4/9238295/59af96cb9eb5/fnins-16-913618-g004.jpg

相似文献

[1]
Organismic Memristive Structures With Variable Functionality for Neuroelectronics.

Front Neurosci. 2022-6-14

[2]
Contact Engineering Approach to Improve the Linearity of Multilevel Memristive Devices.

Micromachines (Basel). 2021-12-16

[3]
Reconfigurable Resistive Switching in VO/LaSrMnO/AlO (0001) Memristive Devices for Neuromorphic Computing.

ACS Appl Mater Interfaces. 2024-4-17

[4]
Robust Resistive Switching Constancy and Quantum Conductance in High-k Dielectric-Based Memristor for Neuromorphic Engineering.

Nanoscale Res Lett. 2022-6-24

[5]
Multilayer redox-based HfO/AlO/TiO memristive structures for neuromorphic computing.

Sci Rep. 2022-10-29

[6]
Vertical MoS Double-Layer Memristor with Electrochemical Metallization as an Atomic-Scale Synapse with Switching Thresholds Approaching 100 mV.

Nano Lett. 2019-4-10

[7]
Volatile Memristive Devices with Analog Resistance Switching Based on Self-Assembled Squaraine Microtubes as Synaptic Emulators.

ACS Appl Mater Interfaces. 2024-1-17

[8]
Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications.

ACS Appl Mater Interfaces. 2022-3-2

[9]
Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing.

Nanotechnology. 2022-3-30

[10]
Memristive Hebbian plasticity model: device requirements for the emulation of Hebbian plasticity based on memristive devices.

IEEE Trans Biomed Circuits Syst. 2015-4-14

引用本文的文献

[1]
Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing.

Nat Commun. 2025-5-9

本文引用的文献

[1]
Contact Engineering Approach to Improve the Linearity of Multilevel Memristive Devices.

Micromachines (Basel). 2021-12-16

[2]
Design of defect-chemical properties and device performance in memristive systems.

Sci Adv. 2020-5-8

[3]
Controlling Cu Migration on Resistive Switching, Artificial Synapse, and Glucose/Saliva Detection by Using an Optimized AlO Interfacial Layer in a-CO -Based Conductive Bridge Random Access Memory.

ACS Omega. 2020-3-17

[4]
Fully hardware-implemented memristor convolutional neural network.

Nature. 2020-1-29

[5]
Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

Nat Commun. 2018-12-14

[6]
Multibit memory operation of metal-oxide bi-layer memristors.

Sci Rep. 2017-12-13

[7]
Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.

Sci Rep. 2016-2-4

[8]
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

Science. 2014-8-7

[9]
Generic relevance of counter charges for cation-based nanoscale resistive switching memories.

ACS Nano. 2013-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索