文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高效神经形态计算的基于二维材料的双晶体管双电阻突触内核

Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing.

作者信息

He Qian, Wang Hailiang, Zhang Yishu, Chen Anzhe, Fu Yu, Xue Guodong, Liu Kaihui, Huang Shiman, Xu Yang, Yu Bin

机构信息

College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China.

出版信息

Nat Commun. 2025 May 9;16(1):4340. doi: 10.1038/s41467-025-59815-x.


DOI:10.1038/s41467-025-59815-x
PMID:40346103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12064777/
Abstract

Neuromorphic computing based on two-dimensional materials represents a promising hardware approach for data-intensive applications. Central to this new paradigm are memristive devices, which serve as the essential components in synaptic kernels. However, large-scale implementation of synaptic matrix using two-dimensional materials is hindered by challenges related to random component variation and array-level integration. Here, we develop a 16 × 16 computing kernel based on two-transistor-two-resistor unit with three-dimensional heterogeneous integration compatibility to boost energy efficiency and computing performance. We demonstrate the 4-bit weight characteristics of artificial synapses with low stochasticity. The synaptic array demonstration validates the practicality of utilizing emerging two-dimensional materials for monolithic three-dimensional heterogeneous integration. Additionally, we introduce the Gaussian noise quantization weight-training scheme alongside the ConvMixer convolution architecture to achieve image dataset identification with high accuracy. Our findings indicate that the synaptic kernel can significantly improve detection accuracy and inference performance on the CIFAR-10 dataset.

摘要

基于二维材料的神经形态计算为数据密集型应用提供了一种很有前景的硬件方法。这种新范式的核心是忆阻器件,它是突触内核的基本组成部分。然而,使用二维材料大规模实现突触矩阵受到与随机元件变化和阵列级集成相关的挑战的阻碍。在此,我们基于具有三维异构集成兼容性的双晶体管双电阻单元开发了一个16×16的计算内核,以提高能源效率和计算性能。我们展示了具有低随机性的人工突触的4位权重特性。突触阵列演示验证了利用新兴二维材料进行单片三维异构集成的实用性。此外,我们引入了高斯噪声量化权重训练方案以及ConvMixer卷积架构,以实现高精度的图像数据集识别。我们的研究结果表明,突触内核可以显著提高在CIFAR-10数据集上的检测精度和推理性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/e19ebf995f0e/41467_2025_59815_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/4b595967cf52/41467_2025_59815_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/4685d3895aaa/41467_2025_59815_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/38cbec76f038/41467_2025_59815_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/e19ebf995f0e/41467_2025_59815_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/4b595967cf52/41467_2025_59815_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/4685d3895aaa/41467_2025_59815_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/38cbec76f038/41467_2025_59815_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/12064777/e19ebf995f0e/41467_2025_59815_Fig4_HTML.jpg

相似文献

[1]
Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing.

Nat Commun. 2025-5-9

[2]
Solid-State Oxide-Ion Synaptic Transistor for Neuromorphic Computing.

Adv Mater. 2025-2

[3]
Decoupling Strategy to Separate Training and Inference with Three-Dimensional Neuromorphic Hardware Composed of Neurons and Hybrid Synapses.

ACS Nano. 2025-4-8

[4]
Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.

ACS Appl Mater Interfaces. 2023-10-27

[5]
Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing.

Nanomicro Lett. 2022-2-5

[6]
Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.

Adv Mater. 2020-12

[7]
High-Performance Synapse Arrays for Neuromorphic Computing via Floating Gate-Engineered IGZO Synaptic Transistors.

Adv Sci (Weinh). 2025-3-20

[8]
Scalable Synaptic Transistor Memory from Solution-Processed Carbon Nanotubes for High-Speed Neuromorphic Data Processing.

Adv Mater. 2025-1

[9]
Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.

Adv Mater. 2021-11

[10]
Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.

Sensors (Basel). 2023-3-14

本文引用的文献

[1]
Van der Waals polarity-engineered 3D integration of 2D complementary logic.

Nature. 2024-6

[2]
Monolithic three-dimensional tier-by-tier integration via van der Waals lamination.

Nature. 2024-6

[3]
Memristor-based storage system with convolutional autoencoder-based image compression network.

Nat Commun. 2024-2-7

[4]
Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions.

Nat Mater. 2023-12

[5]
Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory.

Nat Commun. 2023-9-23

[6]
Edge learning using a fully integrated neuro-inspired memristor chip.

Science. 2023-9-15

[7]
Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing.

Sci Adv. 2023-6-23

[8]
The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research.

Res Social Adm Pharm. 2023-8

[9]
Two-dimensional devices and integration towards the silicon lines.

Nat Mater. 2022-11

[10]
Organismic Memristive Structures With Variable Functionality for Neuroelectronics.

Front Neurosci. 2022-6-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索