Suppr超能文献

基因组预测的核广义回归方法指南。

A guide for kernel generalized regression methods for genomic-enabled prediction.

机构信息

Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, México.

Facultad de Telemática, Universidad de Colima, 28040, Colima, México.

出版信息

Heredity (Edinb). 2021 Apr;126(4):577-596. doi: 10.1038/s41437-021-00412-1. Epub 2021 Mar 1.

Abstract

The primary objective of this paper is to provide a guide on implementing Bayesian generalized kernel regression methods for genomic prediction in the statistical software R. Such methods are quite efficient for capturing complex non-linear patterns that conventional linear regression models cannot. Furthermore, these methods are also powerful for leveraging environmental covariates, such as genotype × environment (G×E) prediction, among others. In this study we provide the building process of seven kernel methods: linear, polynomial, sigmoid, Gaussian, Exponential, Arc-cosine 1 and Arc-cosine L. Additionally, we highlight illustrative examples for implementing exact kernel methods for genomic prediction under a single-environment, a multi-environment and multi-trait framework, as well as for the implementation of sparse kernel methods under a multi-environment framework. These examples are followed by a discussion on the strengths and limitations of kernel methods and, subsequently by conclusions about the main contributions of this paper.

摘要

本文的主要目的是为在统计软件 R 中实现贝叶斯广义核回归方法进行基因组预测提供指导。与传统的线性回归模型相比,这些方法在捕捉复杂的非线性模式方面非常高效。此外,这些方法还可用于利用环境协变量,例如基因型×环境(G×E)预测等。在本研究中,我们提供了七种核方法的构建过程:线性、多项式、Sigmoid、高斯、指数、反余切 1 和反余切 L。此外,我们还强调了在单环境、多环境和多性状框架下实现精确核方法进行基因组预测的示例,以及在多环境框架下实现稀疏核方法的示例。这些示例之后是对核方法的优缺点的讨论,随后是对本文主要贡献的结论。

相似文献

1
A guide for kernel generalized regression methods for genomic-enabled prediction.基因组预测的核广义回归方法指南。
Heredity (Edinb). 2021 Apr;126(4):577-596. doi: 10.1038/s41437-021-00412-1. Epub 2021 Mar 1.

引用本文的文献

2
Enhancing wheat genomic prediction by a hybrid kernel approach.通过混合核方法增强小麦基因组预测
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验