Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, México.
Facultad de Telemática, Universidad de Colima, 28040, Colima, México.
Heredity (Edinb). 2021 Apr;126(4):577-596. doi: 10.1038/s41437-021-00412-1. Epub 2021 Mar 1.
The primary objective of this paper is to provide a guide on implementing Bayesian generalized kernel regression methods for genomic prediction in the statistical software R. Such methods are quite efficient for capturing complex non-linear patterns that conventional linear regression models cannot. Furthermore, these methods are also powerful for leveraging environmental covariates, such as genotype × environment (G×E) prediction, among others. In this study we provide the building process of seven kernel methods: linear, polynomial, sigmoid, Gaussian, Exponential, Arc-cosine 1 and Arc-cosine L. Additionally, we highlight illustrative examples for implementing exact kernel methods for genomic prediction under a single-environment, a multi-environment and multi-trait framework, as well as for the implementation of sparse kernel methods under a multi-environment framework. These examples are followed by a discussion on the strengths and limitations of kernel methods and, subsequently by conclusions about the main contributions of this paper.
本文的主要目的是为在统计软件 R 中实现贝叶斯广义核回归方法进行基因组预测提供指导。与传统的线性回归模型相比,这些方法在捕捉复杂的非线性模式方面非常高效。此外,这些方法还可用于利用环境协变量,例如基因型×环境(G×E)预测等。在本研究中,我们提供了七种核方法的构建过程:线性、多项式、Sigmoid、高斯、指数、反余切 1 和反余切 L。此外,我们还强调了在单环境、多环境和多性状框架下实现精确核方法进行基因组预测的示例,以及在多环境框架下实现稀疏核方法的示例。这些示例之后是对核方法的优缺点的讨论,随后是对本文主要贡献的结论。