Stewart Jon W, Nebabu Tamra, Mikkelsen Maiken H
Department of Electrical and Computer Engineering, Duke University Durham, North Carolina 27708, United States.
Nano Lett. 2022 Jul 13;22(13):5151-5157. doi: 10.1021/acs.nanolett.2c00761. Epub 2022 Jul 1.
Metasurfaces, artificially engineered surfaces comprised of subwavelength resonators, show promise for realizing a new generation of optical materials and devices. However, current metasurface architectures suffer from environmental degradation, a limited spectral range, and a lack of scalability. Here, we demonstrate a novel large-area embedded metasurface architecture that is environmentally robust and capable of a spectrally selective absorption of greater than 80% spanning from 330 to 2740 nm. These fully encapsulated metasurfaces leverage the capabilities of colloidal plasmonic nanoparticles with various crystallinities, materials, shapes, and sizes to access a larger spectral range and allow for control of nanoscale spatial losses and subsequent heat generation within the constituent elements of the metasurface. Through the selection of material, particle size, and shape, these metasurfaces can be designed across the ultraviolet (UV) to short-wave infrared (SWIR) region for various hot-electron, photodetection, photocatalysis, and photothermal processes.
超表面是由亚波长谐振器构成的人工工程表面,有望实现新一代光学材料和器件。然而,当前的超表面架构存在环境稳定性差、光谱范围有限以及缺乏可扩展性等问题。在此,我们展示了一种新型的大面积嵌入式超表面架构,它具有环境稳定性,能够在330至2740纳米范围内实现大于80%的光谱选择性吸收。这些完全封装的超表面利用具有不同结晶度、材料、形状和尺寸的胶体等离子体纳米颗粒的能力,以获得更大的光谱范围,并能够控制超表面组成元素内的纳米级空间损耗和随后的热量产生。通过选择材料、粒径和形状,这些超表面可在紫外(UV)到短波红外(SWIR)区域进行设计,用于各种热电子、光电探测、光催化和光热过程。