Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.
Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.
ACS Chem Biol. 2022 Jul 15;17(7):1924-1936. doi: 10.1021/acschembio.2c00373. Epub 2022 Jul 1.
DNA polymerases have evolved to feature a highly conserved activity across the tree of life: formation of, without exception, internucleotidyl O-P linkages. Can this linkage selectivity be overcome by design to produce xenonucleic acids? Here, we report that the structure-guided redesign of an archaeal DNA polymerase, 9°N, exhibits a new activity undetectable in the wild-type enzyme: catalyzing the formation of internucleotidyl N-P linkages using 3'-NH-ddNTPs. Replacing a metal-binding aspartate in the 9°N active site with asparagine was key to the emergence of this unnatural enzyme activity. MD simulations provided insights into how a single substitution enhances the productive positioning of a 3'-amino nucleophile in the active site. Further remodeling of the protein-nucleic acid interface in the finger subdomain yielded a quadruple-mutant variant (9°N-NRQS) displaying DNA-dependent NP-DNA polymerase activity. In addition, the engineered promiscuity of 9°N-NRQS was leveraged for one-pot synthesis of DNA─NP-DNA copolymers. This work sheds light on the molecular basis of substrate fidelity and latent promiscuity in enzymes.
DNA 聚合酶在生命之树上进化出了高度保守的活性:无一例外地形成核苷酸间 O-P 键。通过设计能否克服这种键选择性,从而产生异核酸?在这里,我们报告说,对一种古细菌 DNA 聚合酶 9°N 的结构引导重新设计,表现出野生型酶中无法检测到的新活性:使用 3'-NH-ddNTP 催化核苷酸间 N-P 键的形成。在 9°N 活性位点中替换一个结合金属的天冬氨酸是产生这种非天然酶活性的关键。MD 模拟提供了深入了解单个取代如何增强 3'-氨基亲核试剂在活性位点中的有效定位。进一步改造手指亚基中的蛋白质-核酸界面,产生了一个四重突变体变体(9°N-NRQS),显示出 DNA 依赖性 NP-DNA 聚合酶活性。此外,工程化的 9°N-NRQS 混杂性被用于一锅法合成 DNA-NP-DNA 共聚物。这项工作揭示了酶中底物保真度和潜在混杂性的分子基础。