Suppr超能文献

使用 3D 成像流式细胞术和人工智能进行多模态 NASH 预后,以对肝细胞进行特征分析。

Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells.

机构信息

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.

Viscient Biosciences Inc, San Diego, CA, 92121, USA.

出版信息

Sci Rep. 2022 Jul 1;12(1):11180. doi: 10.1038/s41598-022-15364-7.

Abstract

To improve the understanding of the complex biological process underlying the development of non-alcoholic steatohepatitis (NASH), 3D imaging flow cytometry (3D-IFC) with transmission and side-scattered images were used to characterize hepatic stellate cell (HSC) and liver endothelial cell (LEC) morphology at single-cell resolution. In this study, HSC and LEC were obtained from biopsy-proven NASH subjects with early-stage NASH (F2-F3) and healthy controls. Here, we applied single-cell imaging and 3D digital reconstructions of healthy and diseased cells to analyze a spatially resolved set of morphometric cellular and texture parameters that showed regression with disease progression. By developing a customized autoencoder convolutional neural network (CNN) based on label-free cell transmission and side scattering images obtained from a 3D imaging flow cytometer, we demonstrated key regulated cell types involved in the development of NASH and cell classification performance superior to conventional machine learning methods.

摘要

为了深入理解非酒精性脂肪性肝炎(NASH)发展背后的复杂生物学过程,本研究采用具备透射和侧向散射成像功能的三维成像流式细胞术(3D-IFC),以单细胞分辨率对肝星状细胞(HSC)和肝内皮细胞(LEC)的形态进行了特征描述。本研究中,HSC 和 LEC 取自活检证实的早期 NASH(F2-F3)和健康对照者。我们通过单细胞成像和对健康和患病细胞的 3D 数字重建,分析了一组具有空间分辨率的形态计量学细胞和纹理参数,这些参数随疾病进展而呈现出退行性变化。我们基于从 3D 成像流式细胞仪获得的无标记细胞透射和侧向散射图像,开发了定制的自动编码器卷积神经网络(CNN),从而证明了参与 NASH 发展的关键调节细胞类型,并实现了优于传统机器学习方法的细胞分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验