Suppr超能文献

利用人工智能从三维成像流式细胞仪数据预测细胞特性。

Predicting cell properties with AI from 3D imaging flow cytometer data.

作者信息

Zhang Zunming, Zhu Yuxuan, Lai Zhaoyu, Zhou Minhong, Chen Xinyu, Tang Rui, Alaynick William, Cho Sung Hwan, Lo Yu-Hwa

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.

NanoCellect Biomedical Inc., San Diego, CA, 92121, USA.

出版信息

Sci Rep. 2025 Feb 17;15(1):5715. doi: 10.1038/s41598-024-80722-6.

Abstract

Predicting the properties of tissues or organisms from the genomics data is widely accepted by the medical community. Here we ask a question: can we predict the properties of each individual cell? Single-cell genomics does not work because the RNA sequencing process destroys the cell, not allowing us to verify our predictions. To test the hypothesis, we investigate the approach of using AI to analyze single-cell images obtained from a 3D imaging flow cytometer. We analyze the cell image at day zero and make the AI-assisted cell property prediction. The prediction is then examined later when the cells continue to live and develop. Our preliminary results are promising, showing 88% accuracy in predicting cells that will have a high protein expression level. The technique can have strong ramifications and impact on preventive medicine, drug development, cell therapy, and fundamental biomedical research.

摘要

从基因组数据预测组织或生物体的特性已被医学界广泛接受。在此我们提出一个问题:我们能否预测每个单个细胞的特性?单细胞基因组学无法做到这一点,因为RNA测序过程会破坏细胞,使我们无法验证我们的预测。为了验证这一假设,我们研究了使用人工智能分析从三维成像流式细胞仪获得的单细胞图像的方法。我们在第零天分析细胞图像,并进行人工智能辅助的细胞特性预测。然后在细胞继续存活和发育时对预测进行检验。我们的初步结果很有前景,在预测将具有高蛋白表达水平的细胞方面显示出88%的准确率。该技术可能会对预防医学、药物开发、细胞治疗和基础生物医学研究产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e8/11833109/86385015f591/41598_2024_80722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验