Suppr超能文献

利用分裂适体平台检测生物相关介质中的 microRNA。

MicroRNA detection in biologically relevant media using a split aptamer platform.

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA.

Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.

出版信息

Bioorg Med Chem. 2022 Sep 1;69:116909. doi: 10.1016/j.bmc.2022.116909. Epub 2022 Jun 27.

Abstract

MicroRNA (miRNA)-based intercellular communication has been implicated in many functional and dysfunctional biological processes. This has raised interest in the potential use of miRNAs as biomarkers for diagnosis and prognosis. Though the list of clinically significant miRNA biomarkers is expanding, it remains challenging to adapt current chemical tools to investigate miRNAs in complex environments native to cells and tissues. We describe here a methodology for rapidly developing aptamer-based fluorescent biosensors that can specifically detect miRNAs in biologically relevant media (10-30% v/v), including medium collected from cultured HeLa cells, human serum, and human plasma. This methodology involves the semi-rational design of the hybridization between DNA oligonucleotides and the miRNA target to build a pool of potential aptamers, and the screening of this pool for high signal-to-background ratio and target specificity. The DNA oligonucleotides are readily available and require no chemical modification, rendering these chemical tools highly adaptable to any novel and niche miRNA target. Following this approach, we developed sensors that detect distinct oncogenic miRNA targets (miR-19b, miR-21, and miR-92a) at concentrations as low as 5 nM without amplification and are selective against single-nucleotide mutants. This work provides a systematic approach toward the development of miRNA biosensors that are easily accessible and can perform in biological environments with minimal sample handling.

摘要

基于微小 RNA(miRNA)的细胞间通讯与许多功能和功能失调的生物学过程有关。这引起了人们对将 miRNAs 用作诊断和预后生物标志物的潜在兴趣。尽管具有临床意义的 miRNA 生物标志物的列表正在不断增加,但仍然难以利用当前的化学工具来研究细胞和组织中原生的复杂环境中的 miRNAs。我们在这里描述了一种快速开发基于适体的荧光生物传感器的方法,该传感器可以在生物学上相关的介质(10-30%v/v)中特异性检测 miRNAs,包括从培养的 HeLa 细胞、人血清和人血浆中收集的介质。该方法涉及 DNA 寡核苷酸与 miRNA 靶标之间杂交的半理性设计,以构建潜在适体库,并针对高信号与背景比和靶标特异性对该库进行筛选。DNA 寡核苷酸易于获得且无需化学修饰,使这些化学工具高度适用于任何新的和特定的 miRNA 靶标。通过这种方法,我们开发了可以在无需扩增的情况下检测低至 5 nM 浓度的特定致癌 miRNA 靶标(miR-19b、miR-21 和 miR-92a)的传感器,并且对单核苷酸突变体具有选择性。这项工作为 miRNA 生物传感器的开发提供了一种系统的方法,这些传感器易于获取,可以在最小化样品处理的生物环境中运行。

相似文献

1
MicroRNA detection in biologically relevant media using a split aptamer platform.
Bioorg Med Chem. 2022 Sep 1;69:116909. doi: 10.1016/j.bmc.2022.116909. Epub 2022 Jun 27.
2
Cascade Transcription Amplification of RNA Aptamer for Ultrasensitive MicroRNA Detection.
Anal Chem. 2019 Apr 16;91(8):5295-5302. doi: 10.1021/acs.analchem.9b00124. Epub 2019 Apr 3.
3
A Cascade Signal Amplification Based on Dynamic DNA Nanodevices and CRISPR/Cas12a Trans-cleavage for Highly Sensitive MicroRNA Sensing.
ACS Synth Biol. 2021 Jun 18;10(6):1481-1489. doi: 10.1021/acssynbio.1c00064. Epub 2021 May 19.
4
Recent advance of RNA aptamers and DNAzymes for MicroRNA detection.
Biosens Bioelectron. 2022 Sep 15;212:114423. doi: 10.1016/j.bios.2022.114423. Epub 2022 May 26.
6
Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection.
Anal Chem. 2018 Aug 21;90(16):10001-10008. doi: 10.1021/acs.analchem.8b02471. Epub 2018 Aug 1.
7
Amplified Split Aptamer Sensor Delivered Using Block Copolymer Nanoparticles for Small Molecule Imaging in Living Cells.
ACS Sens. 2018 Dec 28;3(12):2526-2531. doi: 10.1021/acssensors.8b00670. Epub 2018 Dec 5.
8
A Mirror Image Fluorogenic Aptamer Sensor for Live-Cell Imaging of MicroRNAs.
ACS Sens. 2019 Mar 22;4(3):566-570. doi: 10.1021/acssensors.9b00252. Epub 2019 Mar 12.
9
Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples.
Biosens Bioelectron. 2019 Jan 15;124-125:199-204. doi: 10.1016/j.bios.2018.10.009. Epub 2018 Oct 17.
10
Genetically Encoded Light-Up RNA Amplifier Dissecting MicroRNA Activity in Live Cells.
Anal Chem. 2022 Nov 8;94(44):15481-15488. doi: 10.1021/acs.analchem.2c03643. Epub 2022 Oct 28.

引用本文的文献

1
A Small-Molecule Approach Enables RNA Aptamers to Function as Sensors for Reactive Inorganic Targets.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202421936. doi: 10.1002/anie.202421936. Epub 2024 Dec 20.

本文引用的文献

2
Promiscuous dye binding by a light-up aptamer: application for label-free multi-wavelength biosensing.
Chem Commun (Camb). 2021 Apr 18;57(30):3672-3675. doi: 10.1039/d1cc00594d. Epub 2021 Mar 16.
3
Binary (Split) Light-up Aptameric Sensors.
Angew Chem Int Ed Engl. 2021 Mar 1;60(10):4988-4999. doi: 10.1002/anie.201914919. Epub 2020 Oct 8.
4
Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors.
Nucleic Acids Res. 2020 Apr 17;48(7):3400-3422. doi: 10.1093/nar/gkaa132.
5
CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics.
Adv Mater. 2019 Dec;31(51):e1905311. doi: 10.1002/adma.201905311. Epub 2019 Oct 30.
6
miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons.
Life Sci. 2019 Sep 1;232:116651. doi: 10.1016/j.lfs.2019.116651. Epub 2019 Jul 11.
7
microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer.
J Cell Physiol. 2019 Aug;234(10):17064-17099. doi: 10.1002/jcp.28457. Epub 2019 Mar 19.
8
Cellular microRNA detection with miRacles: microRNA- activated conditional looping of engineered switches.
Sci Adv. 2019 Mar 13;5(3):eaau9443. doi: 10.1126/sciadv.aau9443. eCollection 2019 Mar.
9
Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
Anal Chem. 2019 Feb 19;91(4):2667-2671. doi: 10.1021/acs.analchem.8b03964. Epub 2019 Feb 4.
10
miRBase: from microRNA sequences to function.
Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. doi: 10.1093/nar/gky1141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验