Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA.
Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
Bioorg Med Chem. 2022 Sep 1;69:116909. doi: 10.1016/j.bmc.2022.116909. Epub 2022 Jun 27.
MicroRNA (miRNA)-based intercellular communication has been implicated in many functional and dysfunctional biological processes. This has raised interest in the potential use of miRNAs as biomarkers for diagnosis and prognosis. Though the list of clinically significant miRNA biomarkers is expanding, it remains challenging to adapt current chemical tools to investigate miRNAs in complex environments native to cells and tissues. We describe here a methodology for rapidly developing aptamer-based fluorescent biosensors that can specifically detect miRNAs in biologically relevant media (10-30% v/v), including medium collected from cultured HeLa cells, human serum, and human plasma. This methodology involves the semi-rational design of the hybridization between DNA oligonucleotides and the miRNA target to build a pool of potential aptamers, and the screening of this pool for high signal-to-background ratio and target specificity. The DNA oligonucleotides are readily available and require no chemical modification, rendering these chemical tools highly adaptable to any novel and niche miRNA target. Following this approach, we developed sensors that detect distinct oncogenic miRNA targets (miR-19b, miR-21, and miR-92a) at concentrations as low as 5 nM without amplification and are selective against single-nucleotide mutants. This work provides a systematic approach toward the development of miRNA biosensors that are easily accessible and can perform in biological environments with minimal sample handling.
基于微小 RNA(miRNA)的细胞间通讯与许多功能和功能失调的生物学过程有关。这引起了人们对将 miRNAs 用作诊断和预后生物标志物的潜在兴趣。尽管具有临床意义的 miRNA 生物标志物的列表正在不断增加,但仍然难以利用当前的化学工具来研究细胞和组织中原生的复杂环境中的 miRNAs。我们在这里描述了一种快速开发基于适体的荧光生物传感器的方法,该传感器可以在生物学上相关的介质(10-30%v/v)中特异性检测 miRNAs,包括从培养的 HeLa 细胞、人血清和人血浆中收集的介质。该方法涉及 DNA 寡核苷酸与 miRNA 靶标之间杂交的半理性设计,以构建潜在适体库,并针对高信号与背景比和靶标特异性对该库进行筛选。DNA 寡核苷酸易于获得且无需化学修饰,使这些化学工具高度适用于任何新的和特定的 miRNA 靶标。通过这种方法,我们开发了可以在无需扩增的情况下检测低至 5 nM 浓度的特定致癌 miRNA 靶标(miR-19b、miR-21 和 miR-92a)的传感器,并且对单核苷酸突变体具有选择性。这项工作为 miRNA 生物传感器的开发提供了一种系统的方法,这些传感器易于获取,可以在最小化样品处理的生物环境中运行。