Institute of Transport and Territory, Universitat Politécnica de Valéncia, Valencia, Spain.
Institute of Research and Innovation in Bioengineering, Universitat Politécnica de Valéncia, Valencia, Spain.
Med Image Anal. 2022 Aug;80:102526. doi: 10.1016/j.media.2022.102526. Epub 2022 Jun 25.
Current unsupervised anomaly localization approaches rely on generative models to learn the distribution of normal images, which is later used to identify potential anomalous regions derived from errors on the reconstructed images. To address the limitations of residual-based anomaly localization, very recent literature has focused on attention maps, by integrating supervision on them in the form of homogenization constraints. In this work, we propose a novel formulation that addresses the problem in a more principled manner, leveraging well-known knowledge in constrained optimization. In particular, the equality constraint on the attention maps in prior work is replaced by an inequality constraint, which allows more flexibility. In addition, to address the limitations of penalty-based functions we employ an extension of the popular log-barrier methods to handle the constraint. Last, we propose an alternative regularization term that maximizes the Shannon entropy of the attention maps, reducing the amount of hyperparameters of the proposed model. Comprehensive experiments on two publicly available datasets on brain lesion segmentation demonstrate that the proposed approach substantially outperforms relevant literature, establishing new state-of-the-art results for unsupervised lesion segmentation.
目前,无监督异常定位方法依赖于生成模型来学习正常图像的分布,然后利用该分布来识别来自重建图像错误的潜在异常区域。为了解决基于残差的异常定位的局限性,最近的文献主要关注注意力图,通过以均匀化约束的形式对其进行监督。在这项工作中,我们提出了一种新颖的公式化方法,以更有原则的方式解决这个问题,利用了约束优化中的著名知识。具体来说,先前工作中对注意力图的等式约束被替换为不等式约束,这允许了更大的灵活性。此外,为了解决基于惩罚函数的局限性,我们采用了流行的对数障碍方法的扩展来处理约束。最后,我们提出了一种替代的正则化项,通过最大化注意力图的香农熵来减少所提出模型的超参数数量。在两个公开的脑损伤分割数据集上的综合实验表明,所提出的方法大大优于相关文献,为无监督的损伤分割建立了新的最先进的结果。