Suppr超能文献

基于医疗大数据的心血管疾病预测的机器学习方法的系统评价

A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data.

机构信息

Department of Computer Science & Engineering, Jamia Hamdard, New Delhi, India.

School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China.

出版信息

Med Eng Phys. 2022 Jul;105:103825. doi: 10.1016/j.medengphy.2022.103825. Epub 2022 May 27.

Abstract

There is a considerable rise in cardiovascular diseases in the world. It is pertinently essential to make cardiovascular prediction accurate to the maximum. A forecast based on machine learning techniques can be beneficial in detecting cardiovascular disease (CVD) with maximum precision and accuracy. The disease's effective prediction helps in early diagnosis, which cuts down the mortality rate. A health history and the causes of heart disease require the efficient detection and prediction of CVD. Data analytics is beneficial for making predictions based on a massive amount of data, and it aids health clinics in disease prognosis. Regularly, a large volume of patient-related data is maintained. The information gathered can be used to forecast the emergence of upcoming diseases. Our study presents a detailed comparative study of Cardiovascular Disease by comparing the various machine learning techniques mainly comprising of classification and predictive algorithms. The study shows an in-depth analysis of around forty-one papers related to cardiovascular disease by using machine learning techniques. This study evaluates the selected publications rigorously and identifies gaps in the available literature, making it useful for researchers to develop and apply in clinical fields, primarily on datasets related to heart disease. The current study will aid medical practitioners in predicting heart threats ahead of time, allowing them to take preventative measures.

摘要

世界范围内心血管疾病的发病率显著上升。因此,最大限度地提高心血管疾病预测的准确性至关重要。基于机器学习技术的预测有助于以最高的精度和准确性检测心血管疾病(CVD)。这种疾病的有效预测有助于早期诊断,从而降低死亡率。健康史和心脏病的病因需要对 CVD 进行有效的检测和预测。数据分析有利于根据大量数据进行预测,并且有助于诊所进行疾病预测。通常,大量的与患者相关的数据被保存。收集到的信息可用于预测即将发生的疾病。我们的研究通过比较主要包括分类和预测算法的各种机器学习技术,对心血管疾病进行了详细的比较研究。该研究通过使用机器学习技术对大约 41 篇与心血管疾病相关的论文进行了深入分析。这项研究对选定的出版物进行了严格的评估,并确定了现有文献中的空白,这使得研究人员能够在临床领域开发和应用,主要是在与心脏病相关的数据集上。本研究将帮助医疗从业者提前预测心脏威胁,以便他们采取预防措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验