Friedrich Manuel, Seitz Manuel, Stefanelli Ulisse
Department of Mathematics, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany.
Mathematics Münster, University of Münster, Einsteinstr. 62, 48149 Münster, Germany.
Milan J Math. 2022;90(1):131-175. doi: 10.1007/s00032-022-00350-5. Epub 2022 Mar 24.
Inspired by the modelization of 2D materials systems, we characterize arrangements of identical nonflat squares in 3D. We prove that the fine geometry of such arrangements is completely characterized in terms of patterns of mutual orientations of the squares and that these patterns are periodic and one-dimensional. In contrast to the flat case, the nonflatness of the tiles gives rise to nontrivial geometries, with configurations bending, wrinkling, or even rolling up in one direction.
受二维材料系统建模的启发,我们对三维空间中相同的非平面正方形排列进行了表征。我们证明,这种排列的精细几何结构完全由正方形相互取向的模式来表征,并且这些模式是周期性的且为一维的。与平面情况不同,瓷砖的非平面性产生了非平凡的几何结构,其构型会在一个方向上弯曲、起皱甚至卷起。