金属和金属氧化物基抗病毒纳米粒子:性质、作用机制和应用。
Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications.
机构信息
Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
出版信息
Adv Colloid Interface Sci. 2022 Aug;306:102726. doi: 10.1016/j.cis.2022.102726. Epub 2022 Jun 27.
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
某些类型的基于金属的纳米粒子在其原始形式(“裸”)或表面功能化(“修饰”)后是有效的抗病毒剂,包括由金属(例如银)和金属氧化物(例如氧化锌、二氧化钛或 二氧化铁)组成的纳米粒子。这些纳米粒子可以具有不同的尺寸、形态、表面化学和电荷,从而具有不同的抗病毒活性。它们可以用作水性分散体或掺入复合材料中,例如涂层或包装材料。在这篇综述中,我们提供了基于金属的纳米粒子的设计、制备和表征概述。然后,我们讨论了它们针对各种病毒的潜在作用机制。最后,讨论了一些最常见的金属和金属氧化物纳米粒子的应用,包括由银、氧化锌、氧化铁和二氧化钛制成的纳米粒子。一般来说,金属和金属氧化物纳米粒子的主要抗病毒机制已被观察到是 1)纳米粒子附着在病毒颗粒的表面部分,如刺突糖蛋白,从而破坏病毒在宿主细胞中的附着和脱壳;2)产生活性氧(ROS),使病毒的大分子如核酸、衣壳蛋白和/或脂质包膜变性;3)通过破坏病毒蛋白的二硫键使病毒糖蛋白失活。金属和金属氧化物纳米粒子的一些物理化学性质,包括尺寸、形状、Zeta 电位、在生理条件下的稳定性、表面修饰和孔隙率,都可以影响纳米粒子的抗病毒功效。