Department of Physics, Stanford University, Stanford, CA 94305.
Department of Applied Physics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2114931119. doi: 10.1073/pnas.2114931119. Epub 2022 Jul 5.
The genetic composition of the gut microbiota is constantly reshaped by ecological and evolutionary forces. These strain-level dynamics are challenging to understand because they depend on complex spatial growth processes that take place within a host. Here we introduce a population genetic framework to predict how stochastic evolutionary forces emerge from simple models of microbial growth in spatially extended environments like the intestinal lumen. Our framework shows how fluid flow and longitudinal variation in growth rate combine to shape the frequencies of genetic variants in simulated fecal samples, yielding analytical expressions for the effective generation times, selection coefficients, and rates of genetic drift. We find that over longer timescales, the emergent evolutionary dynamics can often be captured by well-mixed models that lack explicit spatial structure, even when there is substantial spatial variation in species-level composition. By applying these results to the human colon, we find that continuous fluid flow and simple forms of wall growth alone are unlikely to create sufficient bottlenecks to allow large fluctuations in mutant frequencies within a host. We also find that the effective generation times may be significantly shorter than expected from traditional average growth rate estimates. Our results provide a starting point for quantifying genetic turnover in spatially extended settings like the gut microbiota and may be relevant for other microbial ecosystems where unidirectional fluid flow plays an important role.
肠道微生物组的遗传组成不断受到生态和进化力量的重塑。这些菌株水平的动态变化很难理解,因为它们取决于发生在宿主内部的复杂空间生长过程。在这里,我们引入了一个群体遗传学框架,以预测随机进化力量如何从肠道腔等空间扩展环境中微生物生长的简单模型中出现。我们的框架展示了流体流动和生长速率的纵向变化如何结合起来,从而在模拟粪便样本中形成遗传变异的频率,从而为有效世代时间、选择系数和遗传漂变率提供了分析表达式。我们发现,在更长的时间尺度上,即使在物种水平组成存在大量空间变化的情况下,缺乏明确空间结构的均混模型通常可以捕获新兴的进化动态。通过将这些结果应用于人类结肠,我们发现持续的流体流动和简单的壁生长形式本身不太可能在宿主内产生足够的瓶颈,从而导致突变体频率的大幅波动。我们还发现,有效世代时间可能比传统的平均生长速率估计值短得多。我们的研究结果为量化肠道微生物组等空间扩展环境中的遗传周转率提供了一个起点,并且可能与其他单向流体流动起重要作用的微生物生态系统有关。