Alge Olivia P, Gryak Jonathan, VanEpps J Scott, Najarian Kayvan
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Computer Science, Queens College, The City University of New York, Flushing, NY 11367, USA.
Diagnostics (Basel). 2024 Jan 23;14(3):234. doi: 10.3390/diagnostics14030234.
The aim of this research is to apply the learning using privileged information paradigm to sepsis prognosis. We used signal processing of electrocardiogram and electronic health record data to construct support vector machines with and without privileged information to predict an increase in a given patient's quick-Sequential Organ Failure Assessment score, using a retrospective dataset. We applied this to both a small, critically ill cohort and a broader cohort of patients in the intensive care unit. Within the smaller cohort, privileged information proved helpful in a signal-informed model, and across both cohorts, electrocardiogram data proved to be informative to creating the prediction. Although learning using privileged information did not significantly improve results in this study, it is a paradigm worth studying further in the context of using signal processing for sepsis prognosis.
本研究的目的是将利用特权信息范式的学习方法应用于脓毒症预后。我们使用心电图和电子健康记录数据的信号处理,利用回顾性数据集构建有无特权信息的支持向量机,以预测给定患者快速序贯器官衰竭评估评分的增加。我们将此应用于一个小型重症队列和重症监护病房中更广泛的患者队列。在较小的队列中,特权信息在信号告知模型中被证明是有帮助的,并且在两个队列中,心电图数据被证明对创建预测具有信息价值。尽管在本研究中利用特权信息的学习并没有显著改善结果,但在将信号处理用于脓毒症预后的背景下,这是一个值得进一步研究的范式。