Suppr超能文献

SEEG-Net:一种基于可解释深度学习的抗药性癫痫跨个体病理活动检测方法。

SEEG-Net: An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy.

机构信息

Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China.

Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.

出版信息

Comput Biol Med. 2022 Sep;148:105703. doi: 10.1016/j.compbiomed.2022.105703. Epub 2022 Jun 29.

Abstract

OBJECTIVE

Precise preoperative evaluation of drug-resistant epilepsy (DRE) requires accurate analysis of invasive stereoelectroencephalography (SEEG). With the tremendous breakthrough of Artificial intelligence (AI), previous studies can help clinical experts to identify pathological activities automatically. However, they still face limitations when applied in real-world clinical DRE scenarios, such as sample imbalance, cross-subject domain shift, and poor interpretability. Our objective is to propose a model that can address the above problems and realizes high-sensitivity SEEG pathological activity detection based on two real clinical datasets.

METHODS

Our proposed innovative and effective SEEG-Net introduces a multiscale convolutional neural network (MSCNN) to increase the receptive field of the model, and to learn SEEG multiple frequency domain features, local and global features. Moreover, we designed a novel focal domain generalization loss (FDG-loss) function to enhance the target sample weight and to learn domain consistency features. Furthermore, to enhance the interpretability and flexibility of SEEG-Net, we explain SEEG-Net from multiple perspectives, such as significantly different features, interpretable models, and model learning process interpretation by Grad-CAM++.

RESULTS

The performance of our proposed method is verified on a public benchmark multicenter SEEG dataset and a private clinical SEEG dataset for a robust comparison. The experimental results demonstrate that the SEEG-Net model achieves the highest sensitivity and is state-of-the-art on cross-subject (for different patients) evaluation, and well deal with the known problems. Besides, we provide an SEEG processing and database construction flow, by maintaining consistency with the real-world clinical scenarios.

SIGNIFICANCE

According to the results, SEEG-Net is constructed to increase the sensitivity of SEEG pathological activity detection. Simultaneously, we settled certain problems about AI assistance in clinical DRE, built a bridge between AI algorithm application and clinical practice.

摘要

目的

精确的术前耐药性癫痫(DRE)评估需要对侵入性立体脑电图(SEEG)进行准确分析。随着人工智能(AI)的巨大突破,先前的研究可以帮助临床专家自动识别病理活动。然而,当应用于真实世界的临床 DRE 场景时,它们仍然面临一些限制,如样本不平衡、跨主体域迁移和缺乏可解释性。我们的目标是提出一种能够解决上述问题的模型,并基于两个真实的临床数据集实现高灵敏度 SEEG 病理活动检测。

方法

我们提出的创新而有效的 SEEG-Net 引入了一种多尺度卷积神经网络(MSCNN),以增加模型的感受野,并学习 SEEG 的多个频域特征、局部和全局特征。此外,我们设计了一种新颖的焦点域泛化损失(FDG-loss)函数,以增强目标样本的权重并学习域一致性特征。此外,为了增强 SEEG-Net 的可解释性和灵活性,我们从多个角度解释 SEEG-Net,例如显著不同的特征、可解释的模型以及通过 Grad-CAM++ 解释模型学习过程。

结果

我们的方法在一个公共的多中心 SEEG 数据集和一个私人的临床 SEEG 数据集上进行了验证,以进行稳健的比较。实验结果表明,SEEG-Net 模型在跨主体(针对不同患者)评估方面实现了最高的灵敏度,是最先进的,并且很好地解决了已知的问题。此外,我们提供了一个 SEEG 处理和数据库构建流程,通过与真实世界的临床场景保持一致。

意义

根据结果,SEEG-Net 的构建旨在提高 SEEG 病理活动检测的灵敏度。同时,我们解决了 AI 在临床 DRE 中的辅助应用中的某些问题,在 AI 算法应用和临床实践之间架起了桥梁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验