Suppr超能文献

基于发作间期立体定向脑电图单触点多致痫生物标志物分析的癫痫发作起始区自动定位

Automatic Localization of Seizure Onset Zone Based on Multi-Epileptogenic Biomarkers Analysis of Single-Contact from Interictal SEEG.

作者信息

Wang Yiping, Yang Yanfeng, Li Si, Su Zichen, Guo Jinjie, Wei Penghu, Huang Jinguo, Kang Guixia, Zhao Guoguang

机构信息

Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Ministry of Education, No. 10 Xitucheng Road, Haidian District, Beijing 100876, China.

Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing 100053, China.

出版信息

Bioengineering (Basel). 2022 Dec 5;9(12):769. doi: 10.3390/bioengineering9120769.

Abstract

Successful surgery on drug-resistant epilepsy patients (DRE) needs precise localization of the seizure onset zone (SOZ). Previous studies analyzing this issue still face limitations, such as inadequate analysis of features, low sensitivity and limited generality. Our study proposed an innovative and effective SOZ localization method based on multiple epileptogenic biomarkers (spike and HFOs), and analysis of single-contact (MEBM-SC) to address the above problems. We extracted contacts epileptic features from signal distributions and signal energy based on machine learning and end-to-end deep learning. Among them, a normalized pathological ripple rate was designed to reduce the disturbance of physiological ripple and enhance the performance of SOZ localization. Then, a feature selection algorithm based on Shapley value and hypothetical testing (ShapHT+) was used to limit interference from irrelevant features. Moreover, an attention mechanism and a focal loss algorithm were used on the classifier to learn significant features and overcome the unbalance of SOZ/nSOZ contacts. Finally, we provided an SOZ prediction and visualization on magnetic resonance imaging (MRI). Ten patients with DRE were selected to verify our method. The experiment performed cross-validation and revealed that MEBM-SC obtains higher sensitivity. Additionally, the spike has better sensitivity while HFOs have better specificity, and the combination of these biomarkers can achieve the best performance. The study confirmed that MEBM-SC can increase the sensitivity and accuracy of SOZ localization and help clinicians to perform a precise and reliable preoperative evaluation based on interictal SEEG.

摘要

对耐药性癫痫患者(DRE)进行成功的手术需要精确确定癫痫发作起始区(SOZ)。以往分析该问题的研究仍存在局限性,如特征分析不足、灵敏度低和普遍性有限。我们的研究提出了一种基于多种致痫生物标志物(棘波和高频振荡)以及单触点分析(MEBM-SC)的创新且有效的SOZ定位方法,以解决上述问题。我们基于机器学习和端到端深度学习从信号分布和信号能量中提取触点癫痫特征。其中,设计了一种归一化病理涟漪率以减少生理涟漪的干扰并提高SOZ定位性能。然后,使用基于沙普利值和假设检验的特征选择算法(ShapHT+)来限制无关特征的干扰。此外,在分类器上使用注意力机制和焦点损失算法来学习显著特征并克服SOZ/非SOZ触点的不平衡。最后,我们在磁共振成像(MRI)上提供了SOZ预测和可视化。选择了10例DRE患者来验证我们的方法。实验进行了交叉验证,结果表明MEBM-SC具有更高的灵敏度。此外,棘波具有更好的灵敏度,而高频振荡具有更好的特异性,这些生物标志物的组合可实现最佳性能。该研究证实,MEBM-SC可提高SOZ定位的灵敏度和准确性,并帮助临床医生基于发作间期立体定向脑电图进行精确可靠的术前评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af8e/9774098/d910b0a68e5b/bioengineering-09-00769-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验