Suppr超能文献

无标记 1D 微流控棍状条计数法用于微生物菌落和噬菌体噬菌斑的计数。

Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques.

机构信息

Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.

Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath, Claverton Down, Bath BA2 7AY, UK.

出版信息

Lab Chip. 2022 Jul 26;22(15):2820-2831. doi: 10.1039/d2lc00280a.

Abstract

Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml and PFU ml measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 μm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks conventional 2D solid agar Petri dish plates for and , and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for . This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.

摘要

对微生物学来说,对活菌和功能噬菌体进行计数是至关重要的,这是支撑研究、监测、生物制药和诊断的基础。目前,仍需要在琼脂平板上进行缓慢而费力的固体培养,才能进行菌落形成单位(CFU)和噬菌斑形成单位(PFU)的计数。在这里,我们展示了可以在没有生长指示剂染料的情况下使用蘸棒式微流控条来快速简便地测量 CFU/ml 和 PFU/ml。我们首次证明,将氟聚合物微毛细管与数字成像相结合,可以快速以蘸取-检测的方式对噬菌体噬菌斑进行计数。微流控的长度尺度为 2D 固体琼脂培养基表面提供了线性的 1D 替代方案,菌落或噬菌斑清晰可见,呈现为“短线”或“缝隙”。使用 Raspberry Pi 成像的廉价开源暗场生物传感器系统可以在 4-8 小时内在线性、液体基质内检测和计数直径约为 200μm 的微毛细管内的菌落或噬菌斑,无需标记。我们在 1D 微流控中获得了与传统 2D 固体琼脂 Petri 盘完全一致的定量结果, 用于 和 ,对于 T2 噬菌体和噬菌体 K,速度则提高了 6 倍。暗场延时成像使我们能够对微毛细管中的菌落生长进行详细的动力学分析,为微流控微生物学和菌落生长提供了新的见解,这是在 Petri 盘上无法实现的。令人惊讶的是,虽然 菌落出现得更早,但随后在微毛细管中的扩展速度更快。这可能是由于微毛细管内为 1D 菌落生长提供的微环境所致,这与营养物质(葡萄糖)扩散和细菌生长动力学之间的质量平衡有关。对于快速沿毛细管扩散的运动菌株,在液体培养基中无法对单个菌落进行计数,但是加入软琼脂可以抑制扩散,使得这种新的简单蘸取-检测计数方法适用于运动和非运动细菌。无标记的蘸棒式菌落和噬菌斑计数具有许多分析微生物任务的潜力,而 1D 菌落计数的创新对于其他微流控微生物学也具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验