Ecological Sciences, The James Hutton Institute, Dundee, UK.
Department of Conservation of Natural Resources, Neiker, Bilbao, Spain.
ISME J. 2022 Oct;16(10):2337-2347. doi: 10.1038/s41396-022-01277-w. Epub 2022 Jul 7.
Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting "crowd movement". Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting "flocks" resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement.
尽管迁徙对于土壤微生物利用稀缺和异质分布的资源至关重要,但由于实验限制,土壤中细菌的迁移仍未得到充分研究。在这项研究中,使用实时显微镜技术收集的延时图像捕捉到了枯草芽孢杆菌细胞的集体和协调群体,这些细胞表现出“群体运动”。枯草芽孢杆菌细胞群体穿过透明土壤(具有类似于沙子大小的纳滤聚合物)向植物根部移动,并以类似于通常与高等生物(如鸟类群或鱼群)相关的集体行为的形式动态地围绕根尖重新排列成伸长和收缩的“群”。基因分析表明,枯草芽孢杆菌群体可能是由细胞外信号分子(例如趋化作用、群体感应)的扩散驱动的,并且可能受到土壤环境中遇到的物理障碍和流体动力学的影响。我们的发现增进了对细菌通过土壤基质迁移的理解,并扩展了协调细菌运动的已知行为。