Suppr超能文献

使用零截断负二项式模型推断超级传播潜力:以 COVID-19 为例。

Inferencing superspreading potential using zero-truncated negative binomial model: exemplification with COVID-19.

机构信息

JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.

CUHK Shenzhen Research Institute, Shenzhen, China.

出版信息

BMC Med Res Methodol. 2021 Feb 10;21(1):30. doi: 10.1186/s12874-021-01225-w.

Abstract

BACKGROUND

In infectious disease transmission dynamics, the high heterogeneity in individual infectiousness indicates that few index cases generate large numbers of secondary cases, which is commonly known as superspreading events. The heterogeneity in transmission can be measured by describing the distribution of the number of secondary cases as a negative binomial (NB) distribution with dispersion parameter, k. However, such inference framework usually neglects the under-ascertainment of sporadic cases, which are those without known epidemiological link and considered as independent clusters of size one, and this may potentially bias the estimates.

METHODS

In this study, we adopt a zero-truncated likelihood-based framework to estimate k. We evaluate the estimation performance by using stochastic simulations, and compare it with the baseline non-truncated version. We exemplify the analytical framework with three contact tracing datasets of COVID-19.

RESULTS

We demonstrate that the estimation bias exists when the under-ascertainment of index cases with 0 secondary case occurs, and the zero-truncated inference overcomes this problem and yields a less biased estimator of k. We find that the k of COVID-19 is inferred at 0.32 (95%CI: 0.15, 0.64), which appears slightly smaller than many previous estimates. We provide the simulation codes applying the inference framework in this study.

CONCLUSIONS

The zero-truncated framework is recommended for less biased transmission heterogeneity estimates. These findings highlight the importance of individual-specific case management strategies to mitigate COVID-19 pandemic by lowering the transmission risks of potential super-spreaders with priority.

摘要

背景

在传染病传播动力学中,个体传染性的高度异质性表明,少数感染源会产生大量的继发感染,这通常被称为超级传播事件。传播的异质性可以通过描述继发感染数的分布来衡量,其分布符合具有离散参数 k 的负二项式(NB)分布。然而,这种推断框架通常忽略了散发病例的未确诊情况,即那些没有已知流行病学关联且被视为大小为 1 的独立簇的病例,这可能会对估计结果产生偏差。

方法

在本研究中,我们采用基于零截断似然的框架来估计 k。我们通过随机模拟评估了估计性能,并将其与非截断基线版本进行了比较。我们使用三个 COVID-19 的接触者追踪数据集来说明分析框架。

结果

我们证明了当出现零个继发感染的感染源未被确诊的情况时,存在估计偏差,而零截断推断则克服了这一问题,并得出了 k 的估计值偏差更小。我们发现,COVID-19 的 k 值估计为 0.32(95%CI:0.15,0.64),这似乎略小于许多先前的估计值。我们提供了在本研究中应用推断框架的模拟代码。

结论

建议采用零截断框架来进行偏差更小的传播异质性估计。这些发现强调了针对个体的病例管理策略的重要性,通过优先降低潜在超级传播者的传播风险,从而有助于减轻 COVID-19 大流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ea/7877061/2c92a86aac05/12874_2021_1225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验