Suppr超能文献

基于深度学习的体操运动损伤图像识别研究。

Research on Image Recognition of Gymnastics Sports Injuries Based on Deep Learning.

机构信息

School of Physical Education, Jiangxi Normal University, Nanchang 330022, China.

School of Physical Education, Nanchang Normal University, Nanchang 330032, China.

出版信息

Comput Intell Neurosci. 2022 Jun 28;2022:8987006. doi: 10.1155/2022/8987006. eCollection 2022.

Abstract

Gymnastics is an increasingly popular sport and an important event in the Olympic Games. However, the number of unavoidable injuries in sports is also increasing, and the treatment after the injury is very important. We reduce the harm caused by the injury through the identification and research of pictures. Image preprocessing and other methods can in-depth learn about gymnastics sports injuries. We identify the injured pictures of athletes to know the injury situation. Through the analysis of the force of the athletes during exercise, they can be better integrated into picture recognition for sports injuries. More appropriate prevention and treatment measures are suggested.

摘要

体操是一项日益流行的运动,也是奥运会的重要项目。然而,运动中不可避免的受伤人数也在增加,受伤后的治疗非常重要。我们通过对图片的识别和研究来减少受伤带来的伤害。通过图像预处理等方法可以深入学习体操运动损伤。我们识别运动员受伤的图片,了解受伤情况。通过分析运动员运动时的受力情况,可以更好地将其融入到运动损伤的图片识别中。提出更合适的预防和治疗措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7607/9256376/0402de50d19f/CIN2022-8987006.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验