Precision Translational Oncology Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico.
Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico.
Neuro Oncol. 2023 Feb 14;25(2):303-314. doi: 10.1093/neuonc/noac171.
Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma.
RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis.
We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology.
15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.
胶质母细胞瘤是最常见和最具破坏性的原发性脑癌。放射治疗是标准的治疗方法;然而,它与脑放射毒性(BRT)有关。本研究采用多组学方法来确定 BRT 相关基因(RGs)是否具有生存预后价值,以及它们编码的蛋白质是否代表胶质母细胞瘤的新治疗靶点。
通过分析与 BRT 相关的单核苷酸变异(R-SNVs)来鉴定 RGs。使用蛋白质-蛋白质相互作用网络来建立 RGs 之间的功能关系。使用 Glioblastoma Bio-Discovery Portal 数据库中的临床样本评估 RGs 及其功能组对胶质母细胞瘤预后的影响,并使用 Chinese Glioma Genome Atlas 数据集进行验证。通过计算 3D 结构分析来鉴定 RGs 编码的蛋白质中放射性毒性和潜在致病变异的聚类。
通过对 COMT 和 APOE 蛋白质功能组的分析,我们确定了具有胶质母细胞瘤预后价值的 BRT 相关 15CAcBRT 分子特征。其外部验证证实了其与年龄、MGMT 启动子甲基化状态和 IDH 突变状态无关的临床相关性。有趣的是,基因 IL6、APOE 和 MAOB 记录了显著的基因表达水平改变,可用于药物重定位。与 15CAcBRT 特征相关的生物学网络涉及与癌症和神经退行性疾病相关的途径。对 RGs 编码的蛋白质中放射性毒性和潜在致病变异的 3D 聚类分析揭示了神经肿瘤学中潜在的新治疗靶点。
15CAcBRT 是一种与 BRT 相关的分子特征,对胶质母细胞瘤患者具有预后意义,代表了药物重定位和新疗法开发的枢纽。