Suppr超能文献

6 基因风险签名预测多形性胶质母细胞瘤的生存。

A 6-Gene Risk Signature Predicts Survival of Glioblastoma Multiforme.

机构信息

Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.

Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China.

出版信息

Biomed Res Int. 2019 Aug 20;2019:1649423. doi: 10.1155/2019/1649423. eCollection 2019.

Abstract

BACKGROUND

This study aims to develop novel signatures for glioblastoma multiforme (GBM).

METHODS

GBM expression profiles from The Cancer Genome Atlas (TCGA) were downloaded and DEGs between tumor and normal samples were identified by differential expression analysis (DEA). A risk signature was developed by applying weighted gene coexpression network analysis (WGCNA) and Cox regression analysis. Patients were divided into high and low risk group, followed by evaluating the performance of the signature via Kaplan-Meier curve analysis. In addition, the prognostic significance of the signature was further validated using an independent validation dataset from Chinese Glioma Genome Atlas (CGGA). DEGs between high and low risk group were subjected to functional annotation.

RESULTS

A total of 748 DEGs were identified between primary tumor and normal samples. Following WGCNA and Cox regression analysis, 6 DEGs were identified and used to construct a risk signature. The signature showed high performance in both training and validation dataset. Subsequently, 397 DEGs were identified between high and low risk group. These DEGs were mainly enriched in terms related to calcium signaling, cAMP-mediated signaling, and synaptic transmission.

CONCLUSIONS

The risk signature may contribute to GBM diagnosis in future clinical practice.

摘要

背景

本研究旨在为胶质母细胞瘤(GBM)开发新的特征。

方法

从癌症基因组图谱(TCGA)下载 GBM 表达谱,通过差异表达分析(DEA)鉴定肿瘤和正常样本之间的差异表达基因(DEGs)。应用加权基因共表达网络分析(WGCNA)和 Cox 回归分析构建风险特征。将患者分为高风险组和低风险组,然后通过 Kaplan-Meier 曲线分析评估特征的性能。此外,使用来自中国脑胶质瘤基因组图谱(CGGA)的独立验证数据集进一步验证了特征的预后意义。对高风险组和低风险组之间的 DEGs 进行功能注释。

结果

在原发性肿瘤和正常样本之间鉴定出 748 个差异表达基因。经过 WGCNA 和 Cox 回归分析,确定了 6 个 DEGs 用于构建风险特征。该特征在训练和验证数据集均表现出较高的性能。随后,在高风险组和低风险组之间鉴定出 397 个差异表达基因。这些 DEGs 主要富集在钙信号、cAMP 介导的信号和突触传递等相关术语中。

结论

该风险特征可能有助于未来临床实践中的 GBM 诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d5/6720050/6ca9643a58ff/BMRI2019-1649423.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验