Munteanu Vlad Cristian, Munteanu Raluca Andrada, Gulei Diana, Mărginean Radu, Schițcu Vlad Horia, Onaciu Anca, Toma Valentin, Știufiuc Gabriela Fabiola, Coman Ioan, Știufiuc Rareș Ionuț
Department of Urology, The Oncology Institute "Prof Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania.
Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Cancers (Basel). 2022 Jun 30;14(13):3227. doi: 10.3390/cancers14133227.
It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far. In order to fully utilize the entire SERS spectrum and automatically determine the most meaningful spectral features that can be used to differentiate PCa from healthy patients, we perform a multivariate analysis on both the entire and specific spectral intervals. Using the PCA-LDA model, the prostate cancer and control groups are clearly distinguished in our investigation. The separability of the following two data sets is also evaluated using two alternative discrimination techniques: principal least squares discriminant analysis (PLS-DA) and principal component analysis-support vector machine (PCA-SVM).
通过对生物流体记录的振动光谱进行多变量分析,有可能获得与癌症引起的生化元素变化相关的诊断数据。本研究中的前列腺癌组和对照组产生了几乎相似的表面增强拉曼光谱(SERS),这意味着SERS光谱中存在的峰值强度值只能提供非特异性的有限信息来区分这两组。我们用于前列腺癌(PCa)分化的诊断算法是使用光谱数据的主成分分析和线性判别分析(PCA-LDA)构建的,该方法在许多研究的光谱数据管理中已被广泛使用,并且迄今为止已显示出有希望的结果。为了充分利用整个SERS光谱并自动确定可用于区分PCa与健康患者的最有意义的光谱特征,我们对整个光谱区间和特定光谱区间都进行了多变量分析。在我们的研究中,使用PCA-LDA模型可以清楚地区分前列腺癌组和对照组。还使用另外两种判别技术评估了以下两个数据集的可分离性:主最小二乘判别分析(PLS-DA)和主成分分析-支持向量机(PCA-SVM)。