Computational Intelligence Lab, Department of Computer Science, Carl von Ossietzky University, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany.
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
Molecules. 2022 Jun 22;27(13):4020. doi: 10.3390/molecules27134020.
Drug design is a time-consuming and cumbersome process due to the vast search space of drug-like molecules and the difficulty of investigating atomic and electronic interactions. The present paper proposes a computational drug design workflow that combines artificial intelligence (AI) methods, i.e., an evolutionary algorithm and artificial neural network model, and molecular dynamics (MD) simulations to design and evaluate potential drug candidates. For the purpose of illustration, the proposed workflow was applied to design drug candidates against the main protease of severe acute respiratory syndrome coronavirus 2. From the ∼140,000 molecules designed using AI methods, MD analysis identified two molecules as potential drug candidates.
药物设计是一个耗时且繁琐的过程,这是由于类药分子的巨大搜索空间以及原子和电子相互作用研究的困难。本文提出了一种计算药物设计工作流程,该流程结合了人工智能(AI)方法,即进化算法和人工神经网络模型,以及分子动力学(MD)模拟,用于设计和评估潜在的药物候选物。为了说明问题,该工作流程被应用于设计针对严重急性呼吸综合征冠状病毒 2 的主要蛋白酶的药物候选物。使用 AI 方法设计了约 140000 个分子,通过 MD 分析从中鉴定出了两个有潜力的药物候选物。