Institut d'Informàtica i Aplicacions, Universitat de Girona, 17003 Girona, Spain.
Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
Sensors (Basel). 2022 Jun 30;22(13):4944. doi: 10.3390/s22134944.
In this paper, we present a methodology based on generative adversarial network architecture to generate synthetic data sets with the intention of augmenting continuous glucose monitor data from individual patients. We use these synthetic data with the aim of improving the overall performance of prediction models based on machine learning techniques. Experiments were performed on two cohorts of patients suffering from type 1 diabetes mellitus with significant differences in their clinical outcomes. In the first contribution, we have demonstrated that the chosen methodology is able to replicate the intrinsic characteristics of individual patients following the statistical distributions of the original data. Next, a second contribution demonstrates the potential of synthetic data to improve the performance of machine learning approaches by testing and comparing different prediction models for the problem of predicting nocturnal hypoglycemic events in type 1 diabetic patients. The results obtained for both generative and predictive models are quite encouraging and set a precedent in the use of generative techniques to train new machine learning models.
在本文中,我们提出了一种基于生成对抗网络架构的方法,旨在生成具有特定意图的合成数据集,以扩充个体患者的连续血糖监测数据。我们使用这些合成数据旨在提高基于机器学习技术的预测模型的整体性能。实验在两组患有 1 型糖尿病的患者中进行,他们的临床结局存在显著差异。在第一个贡献中,我们已经证明所选择的方法能够根据原始数据的统计分布复制个体患者的内在特征。接下来,第二个贡献通过测试和比较用于预测 1 型糖尿病患者夜间低血糖事件的不同预测模型,展示了合成数据提高机器学习方法性能的潜力。对于生成和预测模型,所获得的结果都非常令人鼓舞,为使用生成技术来训练新的机器学习模型开创了先例。