Suppr超能文献

深度学习在血糖水平预测中的应用:模型在不同数据集上的泛化能力如何?

Deep learning for blood glucose level prediction: How well do models generalize across different data sets?

机构信息

Department of Information and Communication Technologies, Centre for e-Health, University of Agder, Grimstad, Norway.

Department of Information and Communication Technologies, Centre for Artificial Intelligence Research (CAIR), University of Agder, Grimstad, Norway.

出版信息

PLoS One. 2024 Sep 25;19(9):e0310801. doi: 10.1371/journal.pone.0310801. eCollection 2024.

Abstract

Deep learning-based models for predicting blood glucose levels in diabetic patients can facilitate proactive measures to prevent critical events and are essential for closed-loop control therapy systems. However, selecting appropriate models from the literature may not always yield conclusive results, as the choice could be influenced by biases or misleading evaluations stemming from different methodologies, datasets, and preprocessing techniques. This study aims to compare and comprehensively analyze the performance of various deep learning models across diverse datasets to assess their applicability and generalizability across a broader spectrum of scenarios. Commonly used deep learning models for blood glucose level forecasting, such as feed-forward neural network, convolutional neural network, long short-term memory network (LSTM), temporal convolutional neural network, and self-attention network (SAN), are considered in this study. To evaluate the generalization capabilities of each model, four datasets of varying sizes, encompassing samples from different age groups and conditions, are utilized. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Difference (MAD), and Coefficient of Determination (CoD) for analytical asssessment, Clarke Error Grid (CEG) for clinical assessments, Kolmogorov-Smirnov (KS) test for statistical analysis, and generalization ability evaluations to obtain both coarse and granular insights. The experimental findings indicate that the LSTM model demonstrates superior performance with the lowest root mean square error and highest generalization capability among all other models, closely followed by SAN. The ability of LSTM and SAN to capture long-term dependencies in blood glucose data and their correlations with various influencing factors and events contribute to their enhanced performance. Despite the lower predictive performance, the FFN was able to capture patterns and trends in the data, suggesting its applicability in forecasting future direction. Moreover, this study helps in identifying the optimal model based on specific objectives, whether prioritizing generalization or accuracy.

摘要

基于深度学习的糖尿病患者血糖预测模型可以促进主动预防关键事件的措施,对于闭环控制治疗系统至关重要。然而,从文献中选择合适的模型并不总是能得出确定的结果,因为选择可能会受到不同方法、数据集和预处理技术带来的偏差或误导性评估的影响。本研究旨在比较和全面分析各种深度学习模型在不同数据集上的性能,以评估它们在更广泛的场景中的适用性和泛化能力。本研究考虑了常用于血糖水平预测的深度学习模型,如前馈神经网络、卷积神经网络、长短期记忆网络(LSTM)、时间卷积神经网络和自注意力网络(SAN)。为了评估每个模型的泛化能力,使用了四个大小不同的数据集,涵盖了来自不同年龄组和条件的样本。性能指标包括均方根误差(RMSE)、平均绝对差(MAD)和决定系数(CoD)进行分析评估、Clarke 误差网格(CEG)进行临床评估、Kolmogorov-Smirnov(KS)检验进行统计分析以及泛化能力评估以获得粗粒度和细粒度的见解。实验结果表明,在所有其他模型中,LSTM 模型表现出最佳性能,具有最低的均方根误差和最高的泛化能力,紧随其后的是 SAN。LSTM 和 SAN 能够捕捉血糖数据中的长期依赖关系及其与各种影响因素和事件的相关性,这有助于提高它们的性能。尽管 FFN 的预测性能较低,但它能够捕捉数据中的模式和趋势,表明其在预测未来方向方面具有适用性。此外,本研究有助于根据具体目标确定最佳模型,无论是优先考虑泛化能力还是准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/163a/11423977/da8a767dbc4e/pone.0310801.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验