Suppr超能文献

基于深度学习的肺癌患者免疫治疗适用性分析。

Applicability analysis of immunotherapy for lung cancer patients based on deep learning.

机构信息

College of Computer Science and Technology, Jilin University, Jilin 130000, PR China.

College of Software, Jilin University, Changchun 130000, PR China.

出版信息

Methods. 2022 Sep;205:149-156. doi: 10.1016/j.ymeth.2022.07.004. Epub 2022 Jul 6.

Abstract

According to global and Chinese cancer statistics, lung cancer is the second most common cancer globally with the highest mortality rate and a severe threat to human life and health. In recent years, immunotherapy has made significant breakthroughs in the treatment of cancer patients. However, only 30% of patients are applicable and may have immune-related adverse events. The traditional immunological inspection methods have limitations and often can not obtain the expected benefits. Deep learning is a typical representation learning method that can spontaneously mine the hidden feature of effective classification from seas of data. In order to alleviate medical resources and reduce costs, this paper proposes a deep learning-based method to predict patients best suited for immune checkpoint blocking therapy from patients CT images. The deep immunotherapy analysis method proposed in this paper is divided into three steps:(1) Using LUNA16 public dataset to develop a deep learning model for nodule detection. (2) Nodule detection was performed on the Anti-PD-1_Lung dataset, and the effectiveness of immunotherapy was determined by comparing the detection results of nodules before and after immunotherapy. (3) After the data set was processed, the deep learning method trained and analyzed the Lung images. According to the experimental results and comparative analysis, the proposed deep immunotherapy analysis method has a good performance in the detection of nodules. It works for the predictions for the applicability of immunotherapy for lung cancer..

摘要

根据全球和中国癌症统计数据,肺癌是全球第二大常见癌症,死亡率最高,严重威胁人类生命和健康。近年来,免疫疗法在癌症患者的治疗中取得了重大突破。然而,只有 30%的患者适用,并且可能存在免疫相关的不良反应。传统的免疫检查方法存在局限性,往往不能获得预期的效果。深度学习是一种典型的表示学习方法,可以从海量数据中自动挖掘出有效的分类隐藏特征。为了缓解医疗资源紧张和降低成本,本文提出了一种基于深度学习的方法,从患者 CT 图像中预测最适合免疫检查点阻断治疗的患者。本文提出的深度免疫疗法分析方法分为三个步骤:(1)使用 LUNA16 公共数据集开发用于结节检测的深度学习模型。(2)在 Anti-PD-1_Lung 数据集上进行结节检测,并通过比较免疫治疗前后结节的检测结果来确定免疫治疗的有效性。(3)对数据集进行处理后,使用深度学习方法对 Lung 图像进行训练和分析。根据实验结果和对比分析,所提出的深度免疫疗法分析方法在结节检测方面具有良好的性能。它适用于肺癌免疫疗法的适用性预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验