Zhao Enshuang, Dong Liyan, Zhao Hengyi, Zhang Hao, Zhang Tianyue, Yuan Shuai, Jiao Jiao, Chen Kang, Sheng Jianhua, Yang Hongbo, Wang Pengyu, Li Guihua, Qin Qingming
College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China.
J Fungi (Basel). 2023 Oct 12;9(10):1007. doi: 10.3390/jof9101007.
(MoO) pathotype is a devastating fungal pathogen of rice; however, its pathogenic mechanism remains poorly understood. The current research is primarily focused on single-omics data, which is insufficient to capture the complex cross-kingdom regulatory interactions between MoO and rice. To address this limitation, we proposed a novel method called Weighted Gene Autoencoder Multi-Omics Relationship Prediction (WGAEMRP), which combines weighted gene co-expression network analysis (WGCNA) and graph autoencoder to predict the relationship between MoO-rice multi-omics data. We applied WGAEMRP to construct a MoO-rice multi-omics heterogeneous interaction network, which identified 18 MoO small RNAs (sRNAs), 17 rice genes, 26 rice mRNAs, and 28 rice proteins among the key biomolecules. Most of the mined functional modules and enriched pathways were related to gene expression, protein composition, transportation, and metabolic processes, reflecting the infection mechanism of MoO. Compared to previous studies, WGAEMRP significantly improves the efficiency and accuracy of multi-omics data integration and analysis. This approach lays out a solid data foundation for studying the biological process of MoO infecting rice, refining the regulatory network of pathogenic markers, and providing new insights for developing disease-resistant rice varieties.
稻瘟病菌(MoO)致病型是水稻的一种毁灭性真菌病原体;然而,其致病机制仍知之甚少。当前的研究主要集中在单组学数据上,这不足以捕捉MoO与水稻之间复杂的跨界调控相互作用。为解决这一局限性,我们提出了一种名为加权基因自动编码器多组学关系预测(WGAEMRP)的新方法,该方法结合了加权基因共表达网络分析(WGCNA)和图自动编码器来预测MoO-水稻多组学数据之间的关系。我们应用WGAEMRP构建了一个MoO-水稻多组学异质相互作用网络,该网络在关键生物分子中鉴定出18个MoO小RNA(sRNA)、17个水稻基因、26个水稻mRNA和28个水稻蛋白。挖掘出的大多数功能模块和富集途径与基因表达、蛋白质组成、运输和代谢过程相关,反映了MoO的感染机制。与先前的研究相比,WGAEMRP显著提高了多组学数据整合与分析的效率和准确性。这种方法为研究MoO侵染水稻的生物学过程、完善致病标记调控网络以及为培育抗病水稻品种提供新见解奠定了坚实的数据基础。