Fang Mengting, Poskanzer Craig, Anzellotti Stefano
Department of Psychology and Neuroscience, Boston College, Boston, MA, United States.
Front Neuroinform. 2022 Jun 23;16:835772. doi: 10.3389/fninf.2022.835772. eCollection 2022.
Cognitive tasks engage multiple brain regions. Studying how these regions interact is key to understand the neural bases of cognition. Standard approaches to model the interactions between brain regions rely on univariate statistical dependence. However, newly developed methods can capture multivariate dependence. Multivariate pattern dependence (MVPD) is a powerful and flexible approach that trains and tests multivariate models of the interactions between brain regions using independent data. In this article, we introduce PyMVPD: an open source toolbox for multivariate pattern dependence. The toolbox includes linear regression models and artificial neural network models of the interactions between regions. It is designed to be easily customizable. We demonstrate example applications of PyMVPD using well-studied seed regions such as the fusiform face area (FFA) and the parahippocampal place area (PPA). Next, we compare the performance of different model architectures. Overall, artificial neural networks outperform linear regression. Importantly, the best performing architecture is region-dependent: MVPD subdivides cortex in distinct, contiguous regions whose interaction with FFA and PPA is best captured by different models.
认知任务涉及多个脑区。研究这些脑区如何相互作用是理解认知神经基础的关键。对脑区之间相互作用进行建模的标准方法依赖于单变量统计依赖性。然而,新开发的方法可以捕捉多变量依赖性。多变量模式依赖性(MVPD)是一种强大且灵活的方法,它使用独立数据训练和测试脑区之间相互作用的多变量模型。在本文中,我们介绍PyMVPD:一个用于多变量模式依赖性的开源工具箱。该工具箱包括区域间相互作用的线性回归模型和人工神经网络模型。它的设计易于定制。我们使用经过充分研究的种子区域,如梭状面孔区(FFA)和海马旁回位置区(PPA),展示了PyMVPD的示例应用。接下来,我们比较了不同模型架构的性能。总体而言,人工神经网络的表现优于线性回归。重要的是,表现最佳的架构取决于区域:MVPD将皮层细分为不同的连续区域,不同模型能最好地捕捉这些区域与FFA和PPA的相互作用。