Suppr超能文献

基于机器学习从临床和基因数据预测帕金森病冲动控制障碍

Machine Learning-Based Prediction of Impulse Control Disorders in Parkinson's Disease From Clinical and Genetic Data.

作者信息

Faouzi Johann, Bekadar Samir, Artaud Fanny, Elbaz Alexis, Mangone Graziella, Colliot Olivier, Corvol Jean-Christophe

机构信息

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HPHôpital de la Pitié Salpêtriére F-75013 Paris France.

Department of NeurologyParis Brain Institute, Inserm, CNRS, Sorbonne Université, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière F-75013 Paris France.

出版信息

IEEE Open J Eng Med Biol. 2022 May 27;3:96-107. doi: 10.1109/OJEMB.2022.3178295. eCollection 2022.

Abstract

: Impulse control disorders (ICDs) are frequent non-motor symptoms occurring during the course of Parkinson's disease (PD). The objective of this study was to estimate the predictability of the future occurrence of these disorders using longitudinal data, the first study using cross-validation and replication in an independent cohort. We used data from two longitudinal PD cohorts (training set: PPMI, Parkinson's Progression Markers Initiative; test set: DIGPD, Drug Interaction With Genes in Parkinson's Disease). We included 380 PD subjects from PPMI and 388 PD subjects from DIGPD, with at least two visits and with clinical and genetic data available, in our analyses. We trained three logistic regressions and a recurrent neural network to predict ICDs at the next visit using clinical risk factors and genetic variants previously associated with ICDs. We quantified performance using the area under the receiver operating characteristic curve (ROC AUC) and average precision. We compared these models to a trivial model predicting ICDs at the next visit with the status at the most recent visit. The recurrent neural network (PPMI: 0.85 [0.80 - 0.90], DIGPD: 0.802 [0.78 - 0.83]) was the only model to be significantly better than the trivial model (PPMI: ROC AUC = 0.75 [0.69 - 0.81]; DIGPD: 0.78 [0.75 - 0.80]) on both cohorts. We showed that ICDs in PD can be predicted with better accuracy with a recurrent neural network model than a trivial model. The improvement in terms of ROC AUC was higher on PPMI than on DIGPD data, but not clinically relevant in both cohorts. Our results indicate that machine learning methods are potentially useful for predicting ICDs, but further works are required to reach clinical relevance.

摘要

冲动控制障碍(ICD)是帕金森病(PD)病程中常见的非运动症状。本研究的目的是利用纵向数据估计这些障碍未来发生的可预测性,这是第一项在独立队列中使用交叉验证和重复验证的研究。我们使用了两个PD纵向队列的数据(训练集:PPMI,帕金森病进展标记物倡议;测试集:DIGPD,帕金森病药物与基因相互作用)。我们的分析纳入了来自PPMI的380名PD受试者和来自DIGPD的388名PD受试者,这些受试者至少有两次就诊记录且有临床和基因数据。我们训练了三个逻辑回归模型和一个递归神经网络,以使用先前与ICD相关的临床风险因素和基因变异来预测下一次就诊时的ICD。我们使用受试者操作特征曲线下面积(ROC AUC)和平均精度来量化性能。我们将这些模型与一个简单模型进行比较,该简单模型根据最近一次就诊时的状态预测下一次就诊时的ICD。递归神经网络(PPMI:0.85[0.80 - 0.90],DIGPD:0.802[0.78 - 0.83])是唯一在两个队列中均显著优于简单模型(PPMI:ROC AUC = 0.75[0.69 - 0.81];DIGPD:0.78[0.75 - 0.80])的模型。我们表明,与简单模型相比,递归神经网络模型能更准确地预测PD中的ICD。PPMI数据的ROC AUC改善幅度高于DIGPD数据,但在两个队列中均无临床相关性。我们的结果表明,机器学习方法可能有助于预测ICD,但需要进一步开展工作以实现临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba1b/9252337/b707a9cb3447/corvo1-3178295.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验