Mulder J, Raftery A E
Tilburg University, The Netherlands.
Jheronimus Academy of Data Science, Hertogenbosch, The Netherlands.
Sociol Methods Res. 2022 May;51(2):471-498. doi: 10.1177/0049124119882459. Epub 2019 Dec 1.
The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.
施瓦茨准则或贝叶斯信息准则(BIC)是社会科学研究中最广泛使用的模型比较工具之一。然而,BIC并不适用于评估对感兴趣参数有顺序约束的模型。本文探讨了BIC的两种扩展形式,用于评估顺序约束模型,一种是在顺序约束模型下使用截断单位信息先验,另一种是使用截断局部单位信息先验。第一种先验以最大似然估计为中心,后一种先验以零值为中心。多项分析表明,基于局部单位信息先验的顺序约束BIC在评估顺序约束模型时作为一种奥卡姆剃刀效果更好,且导致更低的错误概率。基于局部单位信息先验的方法在R包“BFpack”中实现,这使得研究人员能够轻松地将该方法应用于顺序约束模型选择。使用来自欧洲价值观研究的数据说明了该方法的实用性。