Suppr超能文献

基于细菌纤维素的神经组织工程复合材料。

Bacterial cellulose-based composites for nerve tissue engineering.

机构信息

Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran.

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

出版信息

Int J Biol Macromol. 2022 Sep 30;217:120-130. doi: 10.1016/j.ijbiomac.2022.07.037. Epub 2022 Jul 9.

Abstract

Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.

摘要

神经损伤和神经退行性疾病是非常严重和昂贵的医疗挑战。受损的神经组织可能无法愈合并恢复其功能,而疤痕组织可能会限制神经细胞的再生。近年来,新型的电活性生物材料在神经组织工程领域引起了广泛关注。细菌纤维素 (BC) 由于其独特的性质,如良好的机械性能、高保水能力、生物相容性、高结晶度、大表面积、高纯度、非常细的网络以及由于纤维素酶缺乏而无法在人体中吸收,因此可以被认为是治疗需要长期支持的神经损伤和疾病的有前途的治疗方法。然而,BC 缺乏电活性,但通过与导电结构结合,可以显著提高神经再生率。电刺激已被证明是增加神经再生速度和准确性的有效手段。许多因素,如电流的强度和模式,对细胞活性有积极影响,包括细胞黏附、增殖、迁移和分化,以及细胞-细胞/组织/分子/药物相互作用。本研究讨论了基于 BC 的生物材料在神经组织再生中的重要性和基本作用,以及电刺激对细胞行为的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验