Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
Department of Mathematics, Physics, and Computer Science, University of the Philippines Mindanao, Davao City 8000, Philippines.
Sensors (Basel). 2021 Feb 11;21(4):1288. doi: 10.3390/s21041288.
Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm-factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.
水果成熟度是供应链、消费者偏好和农业产业的关键因素。大多数水果成熟度分类方法仅识别两类:成熟和未成熟,但本文估计了木瓜果实的六个成熟阶段。深度学习架构在单模态处理方面获得了尊重并带来了突破。本文提出了一种新颖的非破坏性多模态分类方法,使用深度卷积神经网络对来自两种成像模式的数据进行特征级联来估计水果成熟度:可见光和高光谱成像系统。样本水果的形态变化可以通过 RGB 图像轻松测量,而在 400nm 到 900nm 之间的波长范围内,高光谱图像可以提取出提供高灵敏度和与果实内部特性高度相关的光谱特征,这些因素在构建模型时必须考虑。本研究进一步修改了架构:AlexNet、VGG16、VGG19、ResNet50、ResNeXt50、MobileNet 和 MobileNetV2,以利用由 RGB 和高光谱数据组成的多模态数据立方体进行敏感性分析。这些多模态变体的分类精度高达 0.90 F1 分数和 1.45%的前 2 错误率。总的来说,利用多模态输入和强大的深度卷积神经网络模型可以对六个阶段的水果成熟度进行分类,甚至可以达到更精细的水平。这表明多模态深度学习架构和多模态成像具有很大的潜力,可用于实时田间水果成熟度估计,有助于估计最佳收获时间和其他田间工业应用。