Suppr超能文献

通过光谱可视化和深度学习增强早期胃肠道疾病检测

Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning.

作者信息

Tsai Tsung-Jung, Lee Kun-Hua, Chou Chu-Kuang, Karmakar Riya, Mukundan Arvind, Chen Tsung-Hsien, Gupta Devansh, Ghosh Gargi, Liu Tao-Yuan, Wang Hsiang-Chen

机构信息

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 60002, Taiwan.

Department of Trauma, Changhua Christian Hospital, Changhua, No. 135, Nanxiao St., Changhua City, Changhua County 50006, Taiwan.

出版信息

Bioengineering (Basel). 2025 Jul 30;12(8):828. doi: 10.3390/bioengineering12080828.

Abstract

Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset ( = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings.

摘要

胃肠道疾病(GIDs)的及时准确诊断仍然是临床内镜检查中的一个关键瓶颈,特别是因为传统白光成像(WLI)在检测早期黏膜异常方面的对比度和灵敏度有限。为了克服这一问题,本研究提出了光谱辅助视觉增强器(SAVE),这是一个创新的、软件驱动的框架,无需对硬件进行任何修改,就能将标准WLI转换为高保真的高光谱成像(HSI)和模拟窄带成像(NBI)。SAVE利用了先进的光谱重建技术,包括基于麦克白色卡的校准、主成分分析(PCA)和多元多项式回归,实现了0.056的均方根误差(RMSE)和超过90%的结构相似性指数(SSIM)。使用ResNet-50、ResNet-101、EfficientNet-B2等深度学习模型在Kvasir v2数据集(=6490)上进行训练和验证,EfficientNet-B5和EfficientNetV2-B0都被用于评估六种关键胃肠道疾病的诊断性能。结果表明,SAVE增强后的图像在精度、召回率和F1分数指标上始终优于原始WLI,EfficientNet-B2和EfficientNetV2-B0实现了最高的分类准确率。值得注意的是,这种性能提升无需专门的成像硬件。这些发现突出了SAVE作为一种变革性解决方案,可增强胃肠道疾病诊断,有可能显著改善早期检测、简化临床工作流程,并拓宽尤其是在资源受限环境中获得先进成像的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b8/12383988/94e0acf495ff/bioengineering-12-00828-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验