Suppr超能文献

一种用于作物病害图像检测任务的工业级解决方案。

An Industrial-Grade Solution for Crop Disease Image Detection Tasks.

作者信息

Dai Guowei, Fan Jingchao

机构信息

National Agriculture Science Data Center, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China.

National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China.

出版信息

Front Plant Sci. 2022 Jun 27;13:921057. doi: 10.3389/fpls.2022.921057. eCollection 2022.

Abstract

Crop leaf diseases can reflect the current health status of the crop, and the rapid and automatic detection of field diseases has become one of the difficulties in the process of industrialization of agriculture. In the widespread application of various machine learning techniques, recognition time consumption and accuracy remain the main challenges in moving agriculture toward industrialization. This article proposes a novel network architecture called YOLO V5-CAcT to identify crop diseases. The fast and efficient lightweight YOLO V5 is chosen as the base network. Repeated Augmentation, FocalLoss, and SmoothBCE strategies improve the model robustness and combat the positive and negative sample ratio imbalance problem. Early Stopping is used to improve the convergence of the model. We use two technical routes of model pruning, knowledge distillation and memory activation parameter compression ActNN for model training and identification under different hardware conditions. Finally, we use simplified operators with INT8 quantization for further optimization and deployment in the deep learning inference platform NCNN to form an industrial-grade solution. In addition, some samples from the Plant Village and AI Challenger datasets were applied to build our dataset. The average recognition accuracy of 94.24% was achieved in images of 59 crop disease categories for 10 crop species, with an average inference time of 1.563 ms per sample and model size of only 2 MB, reducing the model size by 88% and the inference time by 72% compared with the original model, with significant performance advantages. Therefore, this study can provide a solid theoretical basis for solving the common problems in current agricultural disease image detection. At the same time, the advantages in terms of accuracy and computational cost can meet the needs of agricultural industrialization.

摘要

作物叶片病害能够反映作物当前的健康状况,而田间病害的快速自动检测已成为农业产业化进程中的难题之一。在各种机器学习技术广泛应用的情况下,识别耗时和准确率仍是农业走向产业化过程中的主要挑战。本文提出了一种名为YOLO V5-CAcT的新型网络架构来识别作物病害。选择快速高效的轻量级YOLO V5作为基础网络。重复增强、焦点损失和光滑二元交叉熵策略提高了模型的鲁棒性,并解决了正负样本比例失衡问题。使用提前停止策略来提高模型的收敛性。我们采用模型剪枝、知识蒸馏和内存激活参数压缩ActNN这两种技术路线,在不同硬件条件下进行模型训练和识别。最后,我们使用具有INT8量化的简化算子在深度学习推理平台NCNN中进行进一步优化和部署,形成一种工业级解决方案。此外,还应用了来自植物村和AI挑战者数据集的一些样本构建我们的数据集。对于10种作物的59类作物病害图像,平均识别准确率达到94.24%,每个样本的平均推理时间为1.563毫秒,模型大小仅为2MB,与原始模型相比,模型大小减少了88%,推理时间减少了72%,具有显著的性能优势。因此,本研究可为解决当前农业病害图像检测中的常见问题提供坚实的理论基础。同时,在准确率和计算成本方面的优势能够满足农业产业化的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca2a/9272756/bec875b63fb0/fpls-13-921057-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验