Suppr超能文献

使用“分割一切模型”进行全场数字化乳腺摄影中的乳房轮廓描绘

Breast Delineation in Full-Field Digital Mammography Using the Segment Anything Model.

作者信息

Larroza Andrés, Pérez-Benito Francisco Javier, Tendero Raquel, Perez-Cortes Juan Carlos, Román Marta, Llobet Rafael

机构信息

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.

Department of Epidemiology and Evaluation, IMIM (Hospital del Mar Research Institute), Passeig Marítim 25-29, 08003 Barcelona, Spain.

出版信息

Diagnostics (Basel). 2024 May 15;14(10):1015. doi: 10.3390/diagnostics14101015.

Abstract

Breast cancer is a major health concern worldwide. Mammography, a cost-effective and accurate tool, is crucial in combating this issue. However, low contrast, noise, and artifacts can limit the diagnostic capabilities of radiologists. Computer-Aided Diagnosis (CAD) systems have been developed to overcome these challenges, with the accurate outlining of the breast being a critical step for further analysis. This study introduces the SAM-breast model, an adaptation of the Segment Anything Model (SAM) for segmenting the breast region in mammograms. This method enhances the delineation of the breast and the exclusion of the pectoral muscle in both medio lateral-oblique (MLO) and cranio-caudal (CC) views. We trained the models using a large, multi-center proprietary dataset of 2492 mammograms. The proposed SAM-breast model achieved the highest overall Dice Similarity Coefficient (DSC) of 99.22% ± 1.13 and Intersection over Union (IoU) 98.48% ± 2.10 over independent test images from five different datasets (two proprietary and three publicly available). The results are consistent across the different datasets, regardless of the vendor or image resolution. Compared with other baseline and deep learning-based methods, the proposed method exhibits enhanced performance. The SAM-breast model demonstrates the power of the SAM to adapt when it is tailored to specific tasks, in this case, the delineation of the breast in mammograms. Comprehensive evaluations across diverse datasets-both private and public-attest to the method's robustness, flexibility, and generalization capabilities.

摘要

乳腺癌是全球主要的健康问题。乳腺钼靶检查作为一种经济高效且准确的工具,在应对这一问题方面至关重要。然而,低对比度、噪声和伪影会限制放射科医生的诊断能力。为克服这些挑战,已开发出计算机辅助诊断(CAD)系统,准确勾勒乳房是进一步分析的关键步骤。本研究介绍了SAM - breast模型,它是对分割一切模型(SAM)的改编,用于在乳腺钼靶图像中分割乳房区域。该方法在内外斜位(MLO)和头尾位(CC)视图中都增强了乳房的轮廓描绘以及胸肌的排除。我们使用包含2492张乳腺钼靶图像的大型多中心专有数据集对模型进行了训练。所提出的SAM - breast模型在来自五个不同数据集(两个专有数据集和三个公开可用数据集)的独立测试图像上,总体骰子相似系数(DSC)达到了最高的99.22% ± 1.13,交并比(IoU)达到了98.48% ± 2.10。无论供应商或图像分辨率如何,不同数据集的结果都是一致的。与其他基线方法和基于深度学习的方法相比,所提出的方法表现出更强的性能。SAM - breast模型展示了SAM在针对特定任务(即乳腺钼靶图像中乳房的描绘)进行定制时所具有的适应能力。对各种不同数据集(包括私有和公共数据集)的综合评估证明了该方法的稳健性、灵活性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f0c/11120343/d4a722954f67/diagnostics-14-01015-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验