Department of Pharmacy, University of Patras, GR-26504 Patras, Greece. Electronic address: https://twitter.com/@katerina_tsika.
Department of Pharmacy, University of Patras, GR-26504 Patras, Greece. Electronic address: https://twitter.com/@AngeloGallo83.
J Mol Biol. 2022 Aug 30;434(16):167720. doi: 10.1016/j.jmb.2022.167720. Epub 2022 Jul 15.
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.
病毒感染细胞会触发一系列分子防御机制,以维持宿主细胞的内稳态。其中一种机制是 ADP-核糖基化,这是一种基本的翻译后修饰(PTM),其特征是在底物上添加 ADP-核糖(ADPr)。多聚(ADP-核糖)聚合酶(PARPs)参与了这一过程,它们在宿主和病原体蛋白上进行 ADP-核糖基化。一些病毒家族包含可以逆转这种 PTM 的结构基序。这些被称为宏结构域(MDs)的结构基序是进化上保守的蛋白质结构域,存在于所有生命领域。它们分为不同的类别,由于其识别和逆转 ADP-核糖基化的特性,病毒 MD 属于 Macro-D 型。病毒 MD 是潜在的药物靶点,能够对抗宿主的免疫反应。病毒和人类 MD 之间的序列和结构同源性是开发针对其功能的新活性化合物的障碍。瑞德西韦是一种在病毒感染中使用的药物,通过 RNA 依赖性 RNA 聚合酶(RdRp)抑制病毒复制。在此,作为瑞德西韦的活性代谢物的 GS-441524 被测试为几种病毒 MD 的水解酶抑制剂,并测试其与 PARPs 中发现的人类同源物的结合。本研究进行了生化和生物物理研究,表明 GS-441524 选择性修饰 SARS-CoV-2 MD 的去 MARylation 活性,而不与 hPARP14 MD2 和 hPARP15 MD2 相互作用。使用溶液 NMR 和 X 射线晶体学对 MD•GS-441524 复合物进行结构研究,揭示了 ADPr 结合腔中某些氨基酸的影响,表明 F360 及其相邻残基调节抑制剂对 SARS-CoV-2 MD 的选择性结合。