Suppr超能文献

人工智能驱动和手动定量检测程序性死亡配体 1(PD-L1)表达与纳武利尤单抗±伊匹单抗治疗患者结局的关联。

Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab.

机构信息

Bristol Myers Squibb, Princeton, NJ, USA.

PathAI, Boston, MA, USA.

出版信息

Mod Pathol. 2022 Nov;35(11):1529-1539. doi: 10.1038/s41379-022-01119-2. Epub 2022 Jul 15.

Abstract

Assessment of programmed death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) has emerged as an important predictive biomarker across multiple tumor types. However, manual quantitation of PD-L1 positivity can be difficult and leads to substantial inter-observer variability. Although the development of artificial intelligence (AI) algorithms may mitigate some of the challenges associated with manual assessment and improve the accuracy of PD-L1 expression scoring, use of AI-based approaches to oncology biomarker scoring and drug development has been sparse, primarily due to the lack of large-scale clinical validation studies across multiple cohorts and tumor types. We developed AI-powered algorithms to evaluate PD-L1 expression on tumor cells by IHC and compared it with manual IHC scoring in urothelial carcinoma, non-small cell lung cancer, melanoma, and squamous cell carcinoma of the head and neck (prospectively determined during the phase II and III CheckMate clinical trials). 1,746 slides were retrospectively analyzed, the largest investigation of digital pathology algorithms on clinical trial datasets performed to date. AI-powered quantification of PD-L1 expression on tumor cells identified more PD-L1-positive samples compared with manual scoring at cutoffs of ≥1% and ≥5% in most tumor types. Additionally, similar improvements in response and survival were observed in patients identified as PD-L1-positive compared with PD-L1-negative using both AI-powered and manual methods, while improved associations with survival were observed in patients with certain tumor types identified as PD-L1-positive using AI-powered scoring only. Our study demonstrates the potential for implementation of digital pathology-based methods in future clinical practice to identify more patients who would benefit from treatment with immuno-oncology therapy compared with current guidelines using manual assessment.

摘要

免疫组织化学(IHC)检测程序性死亡配体 1(PD-L1)表达已成为多种肿瘤类型的重要预测生物标志物。然而,PD-L1 阳性的手动定量可能很困难,并导致观察者间存在很大的变异性。尽管人工智能(AI)算法的发展可能缓解与手动评估相关的一些挑战并提高 PD-L1 表达评分的准确性,但 AI 方法在肿瘤生物标志物评分和药物开发中的应用仍然很少,主要是由于缺乏在多个队列和肿瘤类型中进行的大规模临床验证研究。我们开发了人工智能驱动的算法来评估肿瘤细胞上的 PD-L1 表达,并将其与尿路上皮癌、非小细胞肺癌、黑色素瘤和头颈部鳞状细胞癌(在 II 期和 III 期 CheckMate 临床试验期间前瞻性确定)的 IHC 手动评分进行了比较。回顾性分析了 1746 张幻灯片,这是迄今为止对临床试验数据集进行的最大规模的数字病理学算法调查。与手动评分相比,在大多数肿瘤类型中,肿瘤细胞上 PD-L1 表达的人工智能量化在≥1%和≥5%的截点处识别出更多的 PD-L1 阳性样本。此外,与使用 AI 或手动方法确定的 PD-L1 阴性患者相比,在使用 AI 或手动方法确定为 PD-L1 阳性的患者中观察到类似的反应和生存改善,而在使用 AI 确定为 PD-L1 阳性的某些肿瘤类型患者中观察到与生存的相关性改善。我们的研究表明,与使用手动评估的当前指南相比,未来在临床实践中实施基于数字病理学的方法可能会识别出更多受益于免疫肿瘤治疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9aa/9596372/3ace342dd3aa/41379_2022_1119_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验