Wang Yunze, Lin Qingyu, Shi Hongcheng, Cheng Dengfeng
Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
Institute of Nuclear Medicine, Fudan University, Shanghai, China.
Front Chem. 2022 Jun 29;10:884517. doi: 10.3389/fchem.2022.884517. eCollection 2022.
The positron emission tomography (PET) molecular imaging technology has gained universal value as a critical tool for assessing biological and biochemical processes in living subjects. The favorable chemical, physical, and nuclear characteristics of fluorine-18 (97% β decay, 109.8 min half-life, 635 keV positron energy) make it an attractive nuclide for labeling and molecular imaging. It stands that 2-[F]fluoro-2-deoxy-D-glucose ([F]FDG) is the most popular PET tracer. Besides that, a significantly abundant proportion of PET probes in clinical use or under development contain a fluorine or fluoroalkyl substituent group. For the reasons given above, F-labeled radiotracer design has become a hot topic in radiochemistry and radiopharmaceutics. Over the past decades, we have witnessed a rapid growth in F-labeling methods owing to the development of new reagents and catalysts. This review aims to provide an overview of strategies in radiosynthesis of [F]fluorine-containing moieties with nucleophilic [F]fluorides since 2015.
正电子发射断层扫描(PET)分子成像技术作为评估活体生物和生化过程的关键工具,已具有普遍价值。氟-18良好的化学、物理和核特性(97%β衰变,半衰期109.8分钟,正电子能量635keV)使其成为用于标记和分子成像的有吸引力的核素。2-[F]氟-2-脱氧-D-葡萄糖([F]FDG)是最常用的PET示踪剂。除此之外,临床使用或正在研发的PET探针中,相当大比例含有氟或氟烷基取代基。基于上述原因,F标记放射性示踪剂的设计已成为放射化学和放射药剂学中的热门话题。在过去几十年里,由于新试剂和催化剂的发展,我们见证了F标记方法的快速增长。本综述旨在概述自2015年以来用亲核[F]氟化物进行含[F]氟部分的放射合成策略。