Ibrahim Oluwasegun M, Okuonghae Daniel, Ikhile Monday N O
STEAM City Initiative, Ado-Ekiti, Nigeria.
African Institute for Mathematical Sciences, Kigali, Rwanda.
Int J Dyn Control. 2023;11(2):835-850. doi: 10.1007/s40435-022-00992-8. Epub 2022 Jul 10.
In this present paper, the principles of optimal control theory is applied to a non-linear mathematical model for the population dynamics of criminal gangs with variability in the sub-population. To decrease (minimize) the progression rate of susceptible populations with no access to crime prevention programs from joining criminal gangs and increase (maximize) the rate of arrested and prosecution of criminals, we incorporate time-dependent control functions. These two functions represent the crime prevention strategy for the susceptible population and case finding control for the criminal gang population, in a limited-resource setting. Furthermore, we present a cost-effectiveness analysis for crime control intervention-related benefits to ascertain the most cost-effective and efficient optimal control strategy. The optimal control functions presented herein are solved by employing the Runge-Kutta Method of order four. Numerical results are demonstrated for different scenarios to exemplify the impact of the controls on the criminal gangs' population.
在本文中,最优控制理论原理被应用于一个具有亚群体变异性的犯罪团伙种群动态非线性数学模型。为了降低(最小化)无法获得预防犯罪项目的易感人群加入犯罪团伙的进展率,并提高(最大化)罪犯的逮捕和起诉率,我们纳入了与时间相关的控制函数。在资源有限的情况下,这两个函数分别代表针对易感人群的预防犯罪策略和针对犯罪团伙人群的案件发现控制。此外,我们对犯罪控制干预相关效益进行了成本效益分析,以确定最具成本效益和效率的最优控制策略。本文提出的最优控制函数通过采用四阶龙格 - 库塔方法求解。针对不同场景展示了数值结果,以例证控制措施对犯罪团伙种群的影响。