Suppr超能文献

数据驱动的健康研究的环境可持续性:一项范围综述。

The environmental sustainability of data-driven health research: A scoping review.

作者信息

Samuel Gabrielle, Lucassen A M

机构信息

Department of Global Health and Social Medicine, King's College London, London, UK.

Wellcome Centre for Human Genetics, Oxford University, Oxford, UK.

出版信息

Digit Health. 2022 Jul 5;8:20552076221111297. doi: 10.1177/20552076221111297. eCollection 2022 Jan-Dec.

Abstract

Data-Driven and Artificial Intelligence technologies are rapidly changing the way that health research is conducted, including offering new opportunities. This will inevitably have adverse environmental impacts. These include carbon dioxide emissions linked to the energy required to generate and process large amounts of data; the impact on the material environment (in the form of data centres); the unsustainable extraction of minerals for technological components; and e-waste (discarded electronic appliances) disposal. The growth of Data-Driven and Artificial Intelligence technologies means there is now a compelling need to consider these environmental impacts and develop means to mitigate them. Here, we offer a scoping review of how the environmental impacts of data storage and processing during Data-Driven and Artificial Intelligence health-related research are being discussed in the academic literature. Using the UK as a case study, we also offer a review of policies and initiatives that consider the environmental impacts of data storage and processing during Data-Driven and Artificial Intelligence health-related research in the UK. Our findings suggest little engagement with these issues to date. We discuss the implications of this and suggest ways that the Data-Driven and Artificial Intelligence health research sector needs to move to become more environmentally sustainable.

摘要

数据驱动和人工智能技术正在迅速改变健康研究的开展方式,包括带来新的机遇。这将不可避免地产生不利的环境影响。这些影响包括与生成和处理大量数据所需能源相关的二氧化碳排放;对物质环境的影响(以数据中心的形式);技术组件所需矿物的不可持续开采;以及电子垃圾(废弃电子设备)的处理。数据驱动和人工智能技术的发展意味着现在迫切需要考虑这些环境影响并制定减轻影响的方法。在此,我们对学术文献中如何讨论数据驱动和人工智能健康相关研究中数据存储和处理的环境影响进行了范围界定综述。以英国为例,我们还对英国考虑数据驱动和人工智能健康相关研究中数据存储和处理的环境影响的政策和举措进行了综述。我们的研究结果表明,迄今为止对这些问题的关注很少。我们讨论了这一情况的影响,并提出了数据驱动和人工智能健康研究领域需要采取哪些措施以实现更环境可持续发展的建议。

相似文献

1
The environmental sustainability of data-driven health research: A scoping review.数据驱动的健康研究的环境可持续性:一项范围综述。
Digit Health. 2022 Jul 5;8:20552076221111297. doi: 10.1177/20552076221111297. eCollection 2022 Jan-Dec.
2
4

引用本文的文献

1
The climate impacts of healthcare digitalization: A scoping review.医疗保健数字化对气候的影响:一项范围综述。
Digit Health. 2025 Aug 25;11:20552076251364666. doi: 10.1177/20552076251364666. eCollection 2025 Jan-Dec.
4
The relevance of sustainable laboratory practices.可持续实验室实践的相关性。
RSC Sustain. 2024 Mar 18;2(5):1300-1336. doi: 10.1039/d4su00056k. eCollection 2024 May 8.
5

本文引用的文献

2
The Carbon Footprint of Bioinformatics.生物信息学的碳足迹。
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac034.
4
Ten simple rules to make your computing more environmentally sustainable.让你的计算更具环境可持续性的十条简单规则。
PLoS Comput Biol. 2021 Sep 20;17(9):e1009324. doi: 10.1371/journal.pcbi.1009324. eCollection 2021 Sep.
5
The environmentally impacts of digital health.数字健康对环境的影响。
Digit Health. 2021 Aug 10;7:20552076211033421. doi: 10.1177/20552076211033421. eCollection 2021 Jan-Dec.
7
Green Algorithms: Quantifying the Carbon Footprint of Computation.绿色算法:计算碳排放的量化研究。
Adv Sci (Weinh). 2021 May 2;8(12):2100707. doi: 10.1002/advs.202100707. eCollection 2021 Jun.
8
E-waste management and its effects on the environment and human health.电子废物管理及其对环境和人类健康的影响。
Sci Total Environ. 2021 Jun 15;773:145623. doi: 10.1016/j.scitotenv.2021.145623. Epub 2021 Feb 4.
9
Digital health at the age of the Anthropocene.人类世时代的数字健康。
Lancet Digit Health. 2020 Jun;2(6):e290-e291. doi: 10.1016/S2589-7500(20)30130-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验