Suppr超能文献

Set-pMAE:用于脑电图情感识别的基于空间-频谱-时间的并行掩码自动编码器。

Set-pMAE: spatial-spEctral-temporal based parallel masked autoEncoder for EEG emotion recognition.

作者信息

Pan Chenyu, Lu Huimin, Lin Chenglin, Zhong Zeyi, Liu Bing

机构信息

School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102 Jilin People's Republic of China.

Jilin Provincial Smart Health Joint Innovation Laboratory for the New Generation of Al, Changchun University of Technology, Changchun, 130102 Jilin People's Republic of China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3757-3773. doi: 10.1007/s11571-024-10162-5. Epub 2024 Aug 14.

Abstract

The utilization of Electroencephalography (EEG) for emotion recognition has emerged as the primary tool in the field of affective computing. Traditional supervised learning methods are typically constrained by the availability of labeled data, which can result in weak generalizability of learned features. Additionally, EEG signals are highly correlated with human emotional states across temporal, spatial, and spectral dimensions. In this paper, we propose a Spatial-spEctral-Temporal based parallel Masked Autoencoder (SET-pMAE) model for EEG emotion recognition. SET-pMAE learns generic representations of spatial-temporal features and spatial-spectral features through a dual-branch self-supervised task. The reconstruction task of the spatial-temporal branch aims to capture the spatial-temporal contextual dependencies of EEG signals, while the reconstruction task of the spatial-spectral branch focuses on capturing the intrinsic spatial associations of the spectral domain across different brain regions. By learning from both tasks simultaneously, SET-pMAE can capture the generalized representations of features from the both tasks, thereby reducing the risk of overfitting. In order to verify the effectiveness of the proposed model, a series of experiments are conducted on the DEAP and DREAMER datasets. Results from experiments reveal that by employing self-supervised learning, the proposed model effectively captures more discriminative and generalized features, thereby attaining excellent performance.

摘要

利用脑电图(EEG)进行情感识别已成为情感计算领域的主要工具。传统的监督学习方法通常受到标记数据可用性的限制,这可能导致所学特征的泛化能力较弱。此外,EEG信号在时间、空间和频谱维度上与人类情绪状态高度相关。在本文中,我们提出了一种基于时空谱的并行掩码自动编码器(SET-pMAE)模型用于EEG情感识别。SET-pMAE通过双分支自监督任务学习时空特征和空间频谱特征的通用表示。时空分支的重建任务旨在捕捉EEG信号的时空上下文依赖性,而空间频谱分支的重建任务则专注于捕捉不同脑区频谱域的内在空间关联。通过同时从这两个任务中学习,SET-pMAE可以捕捉来自这两个任务的特征的通用表示,从而降低过拟合的风险。为了验证所提出模型的有效性,我们在DEAP和DREAMER数据集上进行了一系列实验。实验结果表明,通过采用自监督学习,所提出的模型有效地捕捉了更多有区分性和通用性的特征,从而获得了优异的性能。

相似文献

本文引用的文献

2
Emotion recognition in EEG signals using deep learning methods: A review.基于深度学习方法的 EEG 信号情绪识别:综述。
Comput Biol Med. 2023 Oct;165:107450. doi: 10.1016/j.compbiomed.2023.107450. Epub 2023 Sep 9.
4
Brain-Machine Coupled Learning Method for Facial Emotion Recognition.脑机耦合学习方法在面部情绪识别中的应用。
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10703-10717. doi: 10.1109/TPAMI.2023.3257846. Epub 2023 Aug 7.
5
Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap.语音情感识别的变革时代黎明:弥合效价鸿沟。
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10745-10759. doi: 10.1109/TPAMI.2023.3263585. Epub 2023 Aug 7.
9
4D attention-based neural network for EEG emotion recognition.用于脑电图情感识别的基于4D注意力的神经网络。
Cogn Neurodyn. 2022 Aug;16(4):805-818. doi: 10.1007/s11571-021-09751-5. Epub 2022 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验