Suppr超能文献

利用人工智能算法预测在线博彩环境中基于账户的玩家数据中的自我报告问题赌博。

Using artificial intelligence algorithms to predict self-reported problem gambling with account-based player data in an online casino setting.

机构信息

neccton GmbH, Davidgasse 5, 7052, Muellendorf, Austria.

International Gaming Research Unit, Psychology Department, Nottingham Trent University, 50 Shakespeare Street, NG1 4FQ, Nottingham, UK.

出版信息

J Gambl Stud. 2023 Sep;39(3):1273-1294. doi: 10.1007/s10899-022-10139-1. Epub 2022 Jul 19.

Abstract

In recent years researchers have emphasized the importance of artificial intelligence (AI) algorithms as a tool to detect problem gambling online. AI algorithms require a training dataset to learn the patterns of a prespecified group. Problem gambling screens are one method for the collection of the necessary input data to train AI algorithms. The present study's main aim was to identify the most significant behavioral patterns which predict self-reported problem gambling. In order to fulfil the aim, the study analyzed data from a sample of real-world online casino players and matched their self-report (subjective) responses concerning problem gambling with the participants' actual (objective) gambling behavior. More specifically, the authors were given access to the raw data of 1,287 players from a European online gambling casino who answered questions on the Problem Gambling Severity Index (PGSI) between September 2021 and February 2022. Random forest and gradient boost machine algorithms were trained to predict self-reported problem gambling based on the independent variables (e.g., wagering, depositing, gambling frequency). The random forest model predicted self-reported problem gambling better than gradient boost. Moreover, problem gamblers showed a distinct pattern with respect to their gambling based on the player tracking data. More specifically, problem gamblers lost more money per gambling day, lost more money per gambling session, and deposited money more frequently per gambling session. Problem gamblers also tended to deplete their gambling accounts more frequently compared to non-problem gamblers. A subgroup of problem gamblers identified as being at greater harm (based on their response to PGSI items) showed even higher values with respect to the aforementioned gambling behaviors. The study showed that self-reported problem gambling can be predicted by AI algorithms with high accuracy based on player tracking data.

摘要

近年来,研究人员强调人工智能 (AI) 算法作为在线识别问题赌博的工具的重要性。AI 算法需要一个训练数据集来学习预定组的模式。问题赌博筛查是收集训练 AI 算法所需输入数据的一种方法。本研究的主要目的是确定预测自我报告问题赌博的最显著行为模式。为了实现这一目标,该研究分析了来自真实世界在线赌场玩家样本的数据,并将他们对问题赌博的自我报告(主观)反应与参与者的实际(客观)赌博行为进行了匹配。更具体地说,作者可以访问来自一家欧洲在线博彩赌场的 1287 名玩家的原始数据,这些玩家在 2021 年 9 月至 2022 年 2 月期间回答了问题赌博严重程度指数(PGSI)的问题。随机森林和梯度提升机算法被训练用于根据独立变量(例如,下注、存款、赌博频率)预测自我报告的问题赌博。随机森林模型对自我报告的问题赌博的预测优于梯度提升。此外,根据玩家跟踪数据,问题赌徒的赌博行为呈现出明显的模式。更具体地说,问题赌徒每天的赌资损失更多,每场赌博的损失更多,每场赌博的存款频率更高。问题赌徒也比非问题赌徒更频繁地耗尽他们的赌博账户。根据他们对 PGSI 项目的反应确定的一组更有风险(基于更大伤害)的问题赌徒,在上述赌博行为方面表现出了更高的值。该研究表明,基于玩家跟踪数据,AI 算法可以高度准确地预测自我报告的问题赌博。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15de/10397135/3f7983665b77/10899_2022_10139_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验