Suppr超能文献

使用机器学习技术回溯性预测魁北克的自我报告赌博问题。

Using machine learning to retrospectively predict self-reported gambling problems in Quebec.

机构信息

Department of Sociology and Anthropology, Concordia University, Montreal, Quebec, Canada.

出版信息

Addiction. 2023 Aug;118(8):1569-1578. doi: 10.1111/add.16179. Epub 2023 Mar 21.

Abstract

BACKGROUND AND AIMS

Participating in online gambling is associated with an increased risk for experiencing gambling-related harms, driving calls for more effective, personalized harm prevention initiatives. Such initiatives depend on the development of models capable of detecting at-risk online gamblers. We aimed to determine whether machine learning algorithms can use site data to detect retrospectively at-risk online gamblers indicated by the Problem Gambling Severity Index (PGSI).

DESIGN

Exploratory comparison of six prominent supervised machine learning methods (decision trees, random forests, K-nearest neighbours, logistic regressions, artificial neural networks and support vector machines) to predict problem gambling risk levels reported on the PGSI.

SETTING

Lotoquebec.com (formerly espacejeux.com), an online gambling platform operated by Loto-Québec (a provincial Crown Corporation) in Quebec, Canada.

PARTICIPANTS

N = 9145 adults (18+) who completed the survey measure and placed at least one bet using real money on the site.

MEASUREMENTS

Participants completed the PGSI, a self-report questionnaire with validated cut-offs denoting a moderate-to-high-risk (PGSI 5+) or high-risk (PGSI 8+) for experiencing past-year gambling-related problems. Participants agreed to release additional data about the preceding 12 months from their user accounts. Predictor variables (144) were derived from users' transactions, apparent betting behaviours, listed demographics and use of responsible gambling tools on the platform.

FINDINGS

Our best classification models (random forests) for the PGSI 5+ and 8+ outcome variables accounted for 84.33% (95% CI = 82.24-86.41) and 82.52% (95% CI = 79.96-85.08) of the total area under their receiver operating characteristic curves, respectively. The most important factors in these models included the frequency and variability of participants' betting behaviour and repeat engagement on the site.

CONCLUSIONS

Machine learning algorithms appear to be able to classify at-risk online gamblers using data generated from their use of online gambling platforms. They may enable personalized harm prevention initiatives, but are constrained by trade-offs between their sensitivity and precision.

摘要

背景与目的

参与在线赌博与经历赌博相关危害的风险增加有关,这促使人们呼吁采取更有效、更个性化的伤害预防措施。这些措施取决于开发能够检测高危在线赌徒的模型。我们旨在确定机器学习算法是否可以使用网站数据来检测由赌博严重程度指数(PGSI)指示的有风险的在线赌徒。

设计

使用六种有监督机器学习方法(决策树、随机森林、K 最近邻、逻辑回归、人工神经网络和支持向量机)对在线赌博平台上报告的问题赌博风险水平进行回顾性预测,比较它们的性能。

设置

魁北克彩票公司的在线赌博平台 Lotoquebec.com(以前称为 espacejeux.com),该平台由魁北克的省级公司 Loto-Québec 运营。

参与者

N = 9145 名成年人(18 岁以上),他们完成了调查测量,并在该网站上使用真钱下了至少一次注。

测量

参与者完成了 PGSI,这是一个自我报告问卷,有经过验证的切割点表示过去一年有中度到高度的赌博相关问题(PGSI 5+)或高度风险(PGSI 8+)。参与者同意从他们的用户账户中释放前 12 个月的额外数据。预测变量(144 个)源自用户的交易、明显的投注行为、列出的人口统计数据以及平台上负责任的赌博工具的使用情况。

结果

我们针对 PGSI 5+和 8+结果变量的最佳分类模型(随机森林)分别解释了总曲线下面积的 84.33%(95% CI = 82.24-86.41)和 82.52%(95% CI = 79.96-85.08)。这些模型中最重要的因素包括参与者的投注行为的频率和可变性以及他们在网站上的重复参与。

结论

机器学习算法似乎能够使用在线赌博平台生成的数据对高危在线赌徒进行分类。它们可能能够实现个性化的伤害预防措施,但受到敏感性和精度之间的权衡限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验