Suppr超能文献

基于数据驱动增强基于SnSe的热电系统中的ZT值

Data-Driven Enhancement of ZT in SnSe-Based Thermoelectric Systems.

作者信息

Lee Yea-Lee, Lee Hyungseok, Kim Taeshik, Byun Sejin, Lee Yong Kyu, Jang Seunghun, Chung In, Chang Hyunju, Im Jino

机构信息

Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.

School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

J Am Chem Soc. 2022 Aug 3;144(30):13748-13763. doi: 10.1021/jacs.2c04741. Epub 2022 Jul 19.

Abstract

Doping and alloying are fundamental strategies to improve the thermoelectric performance of bare materials. However, identifying outstanding elements and compositions for the development of high-performance thermoelectric materials is challenging. In this study, we present a data-driven approach to improve the thermoelectric performance of SnSe compounds with various doping. Based on the newly generated experimental and computational dataset, we built highly accurate predictive models of thermoelectric properties of doped SnSe compounds. A well-designed feature vector consisting of the chemical properties of a single atom and the electronic structures of a solid plays a key role in achieving accurate predictions for unknown doping elements. Using the machine learning predictive models and calculated map of the solubility limit for each dopant, we rapidly screened high-dimensional material spaces of doped SnSe and evaluated their thermoelectric properties. This data-driven search provided overall strategies to optimize and improve the thermoelectric properties of doped SnSe compounds. In particular, we identified five dopant candidate elements (Ge, Pb, Y, Cd, and As) that provided a high ZT exceeding 2.0 and proposed a design principle for improving the ZT by Sn vacancies depending on the doping elements. Based on the search, we proposed yttrium as a new high-ZT dopant for SnSe with experimental confirmations. Our research is expected to lead to novel high-ZT thermoelectric material candidates and provide cutting-edge research strategies for materials design and extraction of design principles through data-driven research.

摘要

掺杂和合金化是提高裸材料热电性能的基本策略。然而,确定用于开发高性能热电材料的优异元素和成分具有挑战性。在本研究中,我们提出了一种数据驱动的方法来提高各种掺杂的SnSe化合物的热电性能。基于新生成的实验和计算数据集,我们建立了掺杂SnSe化合物热电性能的高精度预测模型。一个精心设计的特征向量,由单个原子的化学性质和固体的电子结构组成,在实现对未知掺杂元素的准确预测中起着关键作用。利用机器学习预测模型和计算出的每种掺杂剂的溶解度极限图,我们快速筛选了掺杂SnSe的高维材料空间并评估了它们的热电性能。这种数据驱动的搜索提供了优化和改善掺杂SnSe化合物热电性能的总体策略。特别是,我们确定了五种掺杂候选元素(Ge、Pb、Y、Cd和As),它们提供了超过2.0的高ZT值,并提出了根据掺杂元素通过Sn空位提高ZT的设计原则。基于该搜索,我们提出钇作为SnSe的一种新的高ZT掺杂剂,并得到了实验证实。我们的研究有望产生新型的高ZT热电材料候选物,并通过数据驱动的研究为材料设计和设计原则的提取提供前沿的研究策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验