State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
Trends Genet. 2022 Nov;38(11):1147-1169. doi: 10.1016/j.tig.2022.06.015. Epub 2022 Jul 16.
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
基因组编辑技术不断推动生物学研究的发展。由于其简单性和灵活性,基于 CRISPR/Cas 的编辑已成为大多数系统中首选的技术。Cas 核酸酶可容忍与大蛋白结构域融合,从而使它们的 DNA 识别特性与新的酶活性相结合。与核苷脱氨酶或逆转录酶结构域融合产生了碱基编辑器和先导编辑器,它们不会在靶序列中产生双链断裂,而是诱导单个(或几个相邻)核苷酸的特异性改变。基于转录激活子样效应物的仅蛋白质基因组编辑试剂的可用性使碱基编辑扩展到叶绿体和线粒体基因组成为可能。在这篇综述中,我们总结了目前可用于核基因组和细胞器基因组的碱基编辑方法。我们重点介绍了提高精度、特异性和效率的最新进展,并讨论了当前的限制和未来的挑战。我们还简要概述了农业生物技术和基因治疗中的应用。