Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA.
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
Pediatr Res. 2023 Mar;93(4):969-975. doi: 10.1038/s41390-022-02116-6. Epub 2022 Jul 19.
Hospitalized children with central venous lines (CVLs) are at higher risk of hospital-acquired infections. Information in electronic health records (EHRs) can be employed in training deep learning models to predict the onset of these infections. We incorporated clinical notes in addition to structured EHR data to predict serious bloodstream infections, defined as positive blood culture followed by at least 4 days of new antimicrobial agent administration, among hospitalized children with CVLs.
Structured EHR information and clinical notes were extracted for a retrospective cohort including all hospitalized patients with CVLs at a single tertiary care pediatric health system from 2013 to 2018. Deep learning models were trained to determine the added benefit of incorporating the information embedded in clinical notes in predicting serious bloodstream infection.
A total of 24,351 patient encounters met inclusion criteria. The best-performing model restricted to structured EHR data had a specificity of 0.951 and positive predictive value (PPV) of 0.056 when the sensitivity was set to 0.85. The addition of contextualized word embeddings improved the specificity to 0.981 and PPV to 0.113.
Integrating clinical notes with structured EHR data improved the prediction of serious bloodstream infections among pediatric patients with CVLs.
Developed an advanced infection prediction model in pediatrics that integrates the structured and unstructured EHRs. Extracted information from clinical notes to do timely prediction in a clinical setting. Developed a deep learning model framework that can be employed in predicting rare events in a complex and dynamic environment.
患有中心静脉置管(CVL)的住院儿童发生医院获得性感染的风险更高。电子健康记录(EHR)中的信息可用于训练深度学习模型,以预测这些感染的发生。我们将临床记录纳入了结构化 EHR 数据中,以预测患有 CVL 的住院儿童中严重血流感染的发生,该感染定义为阳性血培养后至少 4 天开始使用新的抗菌药物。
从 2013 年至 2018 年,我们从一家三级儿科保健系统中回顾性地纳入了所有患有 CVL 的住院患者,提取了结构化 EHR 信息和临床记录。训练深度学习模型,以确定在预测严重血流感染时纳入临床记录中嵌入信息的额外益处。
共有 24351 例患者符合纳入标准。在将敏感性设定为 0.85 时,仅使用结构化 EHR 数据的最佳表现模型的特异性为 0.951,阳性预测值(PPV)为 0.056。添加上下文单词嵌入可将特异性提高到 0.981,PPV 提高到 0.113。
将临床记录与结构化 EHR 数据相结合可提高对患有 CVL 的儿科患者严重血流感染的预测能力。
在儿科领域开发了一种先进的感染预测模型,该模型集成了结构化和非结构化的 EHR。从临床记录中提取信息,以便在临床环境中进行及时预测。开发了一个深度学习模型框架,可用于在复杂动态环境中预测罕见事件。