Suppr超能文献

基于交互式虚拟现实场景的监督学习分类器的自动压力识别。

Automated Stress Recognition Using Supervised Learning Classifiers by Interactive Virtual Reality Scenes.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2060-2066. doi: 10.1109/TNSRE.2022.3192571. Epub 2022 Jul 27.

Abstract

Virtual reality (VR) technology offers a great opportunity to explore stress disorder therapies. We created a VR stress training system, which incorporates three highly interactive stressful scenes to elicit stress, and demonstrate the concurrent variations between physiological data (heart rate, electrodermal activity and eye-blink rate) and self-reported stress ratings through a self-designed customized perceived stress questionnaire (SSAI) and wearable devices. Several supervised learning models were rigorously applied to automate stress recognition. Our findings include the evaluations of the VR system by computing Cronbach's alpha ( α = 0.72 ) and Kaiser-Meyer-Olkin (KMO) coefficient ( η = 0.78 ) through a retrospective survey, which were subsequently confirmed as reliable on four aspects (sense of presence, sense of space, sense of immersion and sense of reality) via factor analysis. Additionally, we demonstrate the effectiveness of physiology-based stress level classification (no stress, low stress and high stress) and continuous SSAI score prediction, with accuracy reaching 0.742 by bagging ensemble learning model and goodness-of-fit reaching 0.44 via multivariate stepwise regression. This study provides detailed insight regarding the effect of objective physiological measures on the validation of subjective self-ratings under a novel complex VR stress training system, which stimulates the further investigations of stress disorder recognition and treatment.

摘要

虚拟现实 (VR) 技术为探索应激障碍疗法提供了绝佳的机会。我们创建了一个 VR 应激训练系统,该系统整合了三个高度互动的应激场景来引发应激,并通过自行设计的定制感知应激问卷 (SSAI) 和可穿戴设备展示生理数据(心率、皮肤电活动和眨眼率)与自我报告的应激评分之间的并发变化。我们严格应用了几种监督学习模型来实现应激识别的自动化。我们的研究结果包括通过回顾性调查计算 VR 系统的 Cronbach's alpha(α=0.72)和 Kaiser-Meyer-Olkin(KMO)系数(η=0.78)的评估,随后通过因子分析确认了四个方面(存在感、空间感、沉浸感和现实感)的可靠性。此外,我们展示了基于生理学的应激水平分类(无应激、低应激和高应激)和连续 SSAI 评分预测的有效性,袋装集成学习模型的准确率达到 0.742,多元逐步回归的拟合优度达到 0.44。本研究详细探讨了客观生理测量在新型复杂 VR 应激训练系统下对主观自我评分验证的影响,这激发了对应激障碍识别和治疗的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验