Suppr超能文献

比较移动源以建立哥伦比亚寨卡病毒流行传播模型。

Comparing sources of mobility for modelling the epidemic spread of Zika virus in Colombia.

机构信息

Laboratory of Digital and Computational Demography, Max Planck Institute for Demographic Research, Rostock, Germany.

Universidad Camilo Jose Cela, CAILab, Madrid, Spain.

出版信息

PLoS Negl Trop Dis. 2022 Jul 20;16(7):e0010565. doi: 10.1371/journal.pntd.0010565. eCollection 2022 Jul.

Abstract

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.

摘要

关于人类流动性的及时、准确和可比数据对于疫情的预防和应对至关重要,但通常无法获得或难以获取。移动电话元数据(通常以通话记录详细信息 (CDR) 的形式)代表了一种前所未有的大规模人类流动信息的强大来源。在这项工作中,我们研究了利用聚合 CDR 衍生的流动性来预测 2015-2016 年哥伦比亚寨卡病毒 (ZIKV) 爆发的潜在好处,与其他传统数据源相比。为了在哥伦比亚的次国家层面模拟 ZIKV 的传播,我们采用了一种用于虫媒病毒的随机化元种群传染病模型。我们的模型整合了有关 ZIKV 传播的关键驱动因素的详细数据,包括蚊子数量的空间异质性,以及由于环境和社会经济因素导致的人口对病毒的暴露。在相同的建模设置(即初始条件和流行病学参数)下,我们对每个流动性网络进行了计算机模拟,并评估了它们在根据官方监测数据再现局部爆发方面的能力。我们评估了我们的传染病建模方法在全国和次国家层面捕捉 ZIKV 爆发的能力。我们的模型估计值与全国监测数据高度相关(基于 CDR 信息的网络的 Pearson r = 0.92)。此外,我们发现基于 CDR 信息的流动性网络生成的模型估计值在再现次国家层面观察到的局部爆发方面表现强劲。与基于 CDR 信息的网络相比,其他流动性网络的性能要么相似,要么明显较低,在预测局部疫情方面没有附加价值。这表明移动电话数据更好地捕捉了人类流动模式的全貌。这项工作有助于正在进行的关于 CDR 数据聚合流动性估计值的价值的讨论,只要有适当的数据保护和隐私保护措施,这些数据就可以用于社会影响应用和人道主义行动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2327/9299334/7528f61c10aa/pntd.0010565.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验