Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy.
Institute of Biosciences and Bioresources, National Research Council, Via Pietro Castellino 111, Napoli, Italy.
Adv Healthc Mater. 2022 Oct;11(19):e2200366. doi: 10.1002/adhm.202200366. Epub 2022 Jul 28.
Next generation bioengineering strives to identify crucial cues that trigger regeneration of damaged tissues, and to control the cells that execute these programs with biomaterials and devices. Molecular and biophysical mechanisms driving embryogenesis may inspire novel tools to reactivate developmental programs in situ. Here nanoparticles based on conjugated polymers are employed for optical control of regenerating tissues by using an animal with unlimited regenerative potential, the polyp Hydra, as in vivo model, and human keratinocytes as an in vitro model to investigate skin repair. By integrating animal, cellular, molecular, and biochemical approaches, nanoparticles based on poly-3-hexylthiophene (P3HT) are shown able to enhance regeneration kinetics, stem cell proliferation, and biomolecule oxidation levels. Opposite outputs are obtained with PCPDTBT-NPs (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)], causing a beneficial effect on Hydra regeneration but not on the migratory capability of keratinocytes. These results suggest that the artificial modulation of the redox potential in injured tissues may represent a powerful modality to control their regenerative potential. Importantly, the possibility to fine-tuning materials' photocatalytic efficiency may enable a biphasic modulation over a wide dynamic range, which can be exploited to augment the tissue regenerative capacity or inhibit the unlimited potential of cancerous cells in pathological contexts.
下一代生物工程致力于识别触发受损组织再生的关键线索,并利用生物材料和设备来控制执行这些程序的细胞。驱动胚胎发生的分子和生物物理机制可能会激发新的工具,以在原位重新激活发育程序。在这里,基于共轭聚合物的纳米粒子被用于通过使用具有无限再生潜力的动物,水螅,作为体内模型,以及人类角质形成细胞作为体外模型,来控制再生组织的光学。通过整合动物、细胞、分子和生化方法,基于聚 3-己基噻吩(P3HT)的纳米粒子被证明能够增强再生动力学、干细胞增殖和生物分子氧化水平。相反,用 PCPDTBT-NPs(聚[2,6-(4,4-双-(2-乙基己基)-4H-环戊[2,1-b;3,4-b']二噻吩)-交替-4,7(2,1,3-苯并噻二唑])获得相反的输出,这对水螅再生有有益的影响,但对角质形成细胞的迁移能力没有影响。这些结果表明,人工调节损伤组织中的氧化还原电位可能是控制其再生潜力的一种有效方式。重要的是,精细调整材料光催化效率的可能性可以实现宽动态范围内的双相调制,这可以用于增强组织的再生能力或抑制病理性环境中癌细胞的无限潜力。